首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge.  相似文献   

2.
One goal of postsecondary education is to assist students in developing expert-level understanding. Previous attempts to encourage expert-level understanding of phylogenetic analysis in college science classrooms have largely focused on isolated, or “one-shot,” in-class activities. Using a deliberate practice instructional approach, we designed a set of five assignments for a 300-level plant systematics course that incrementally introduces the concepts and skills used in phylogenetic analysis. In our assignments, students learned the process of constructing phylogenetic trees through a series of increasingly difficult tasks; thus, skill development served as a framework for building content knowledge. We present results from 5 yr of final exam scores, pre- and postconcept assessments, and student surveys to assess the impact of our new pedagogical materials on student performance related to constructing and interpreting phylogenetic trees. Students improved in their ability to interpret relationships within trees and improved in several aspects related to between-tree comparisons and tree construction skills. Student feedback indicated that most students believed our approach prepared them to engage in tree construction and gave them confidence in their abilities. Overall, our data confirm that instructional approaches implementing deliberate practice address student misconceptions, improve student experiences, and foster deeper understanding of difficult scientific concepts.  相似文献   

3.
Basic phylogenetics and associated “tree thinking” are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K–12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in science, technology, engineering, and mathematics (STEM) outreach activities increase awareness of college and career options and highlight interdisciplinary fields of science research and augment the science curriculum. To aid in this effort, we designed a 6-h module in which students utilized 12 flowering plant species to generate morphological and molecular phylogenies using biological techniques and bioinformatics tools. The phylogenetics module was implemented with 83 high school students during a weeklong university STEM immersion program and aimed to increase student understanding of phylogenetics and coevolution of plants and pollinators. Student response reflected positive engagement and learning gains as evidenced through content assessments, program evaluation surveys, and program artifacts. We present the results of the first year of implementation and discuss modifications for future use in our immersion programs as well as in multiple course settings at the high school and undergraduate levels.
Just as beginning students in geography need to be taught how to read maps, so beginning students in biology should be taught how to read trees and to understand what trees communicate. O’Hara (1997 , p. 327)
  相似文献   

4.
The Biology Intensive Orientation for Students (BIOS) Program was designed to assess the impact of a 5-d intensive prefreshman program on success and retention of biological science majors at Louisiana State University. The 2005 pilot program combined content lectures and examinations for BIOL 1201, Introductory Biology for Science Majors, as well as learning styles assessments and informational sessions to provide the students with a preview of the requirements of biology and the pace of college. Students were tracked after their BIOS participation, and their progress was compared with a control group composed of students on the BIOS waiting list and a group of BIOL 1201 students who were identified as the academic matches to the BIOS participants (high school GPA, ACT score, and gender). The BIOS participants performed significantly better on the first and second exams, they had a higher course average, and they had a higher final grade than the control group. These students also had higher success rates (grade of “A,” “B,” or “C”) during both the fall and spring semesters and remained on track through the first semester of their sophomore year to graduate in 4 yr at a significantly higher rate than the control group.  相似文献   

5.
THE CONSTANT ERROR OF THE HALO IN EDUCATIONAL OUTCOMES RESEARCH   总被引:2,自引:1,他引:1  
Students' reports of their learning anddevelopment play an important role in research andassessment in higher education. Assessment researchfrequently asks students questions about gains madeduring college to identify dimensions of gains andthen examines relationships between college experiencesand gains. A growing body of research suggests thatcorrelations between ratings of gains and college experiences may be an artifact of a constanterror of the halo. The present research examines whetherhalo error underlies students' self reports of gains,the significance of the halo error, and the effect of halo error on relationships between collegeexperiences and educational outcomes. Results confirmthat halo error may be an important component instudents' ratings of their learning and development. Moreover, halo error may obscure relationshipsbetween college experiences and educationaloutcomes.  相似文献   

6.
The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships depicted in such noncladogenic diagrams and how they think about the underlying evolutionary processes. Study 1 investigated how students (n = 50) interpreted the evolutionary relationships depicted in four such evolutionary diagrams. In Study 2, new students (n = 62) were asked to interpret what the students in Study 1 meant when they used the terms evolved into/from and ancestor/descendant of. The results show the interpretations fell broadly into two categories: (a) evolution as an anagenic rather than cladogenic process, and (b) evolution as a teleological (purpose‐driven) process. These results imply that noncladogenic diagrams are inappropriate for use in evolution education because they lead to the misinterpretation of many evolutionary processes. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:861–882, 2010  相似文献   

7.
The American Association for the Advancement of Science 2011 report Vision and Change in Undergraduate Biology Education encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary developmental biology, or “evo-devo.” To assist in efforts to improve evo-devo instruction among undergraduate biology majors, we designed a concept inventory (CI) for evolutionary developmental biology, the EvoDevoCI. The CI measures student understanding of six core evo-devo concepts using four scenarios and 11 multiple-choice items, all inspired by authentic scientific examples. Distracters were designed to represent the common conceptual difficulties students have with each evo-devo concept. The tool was validated by experts and administered at four institutions to 1191 students during preliminary (n = 652) and final (n = 539) field trials. We used student responses to evaluate the readability, difficulty, discriminability, validity, and reliability of the EvoDevoCI, which included items ranging in difficulty from 0.22–0.55 and in discriminability from 0.19–0.38. Such measures suggest the EvoDevoCI is an effective tool for assessing student understanding of evo-devo concepts and the prevalence of associated common conceptual difficulties among both novice and advanced undergraduate biology majors.  相似文献   

8.
This feature is designed to point CBE---Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research.This feature is designed to point CBE—Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as “Abstract available,” full text may be accessible at the indicated URL for readers whose institutions subscribe to the corresponding journal.
  • 1. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, Wenderoth MP (2014). Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci USA 111, 8410–8415. [Abstract available at www.pnas.org/content/111/23/8410.abstract]
Online publication of this meta-analysis last spring no doubt launched a legion of local and national conversations about how science is best taught—as the authors state the essential issue, “Should we ask or should we tell?” To assess the relative effectiveness of active-learning (asking) versus lecture-based (telling) methods in college-level science, technology, engineering, and mathematics (STEM) classes, the authors scoured the published and unpublished literature for studies that performed a side-by-side comparison of the two general types of methods. Using five predetermined criteria for admission to the study (described fully in the materials and methods section), at least two independent coders examined each potentially eligible paper to winnow down the number of eligible studies from 642 to 225. The working definition of what constitutes active learning (used to determine potential eligibility) was obtained from distilling definitions written by 338 seminar attendees; what constitutes lecture was defined as “continuous exposition by the teacher” (quoted from Bligh, 2000 ). The eligible studies were situated in introductory and upper-division courses from a full range of enrollment sizes and multiple STEM disciplines and included majors and nonmajors as participants. The frequency of use and types of active-learning methodologies described in the 225 eligible studies varied widely.Quantitative analysis of the eligible studies focused on comparison of two outcome variables: 1) scores on identical or formally equivalent examinations and 2) failure rates (receipt of a “D” or “F” grade or withdrawal from the course). Major findings were that student performance on exams and other assessments (such as concept inventories) was nearly half an SD higher in active-learning versus lecture courses, with an effect size (standardized mean weighted difference) of 0.47. Analyses also revealed that average failure rates were 55% higher for students in the lecture courses than in courses with active learning. Heterogeneity analyses indicated that 1) there were no statistically significant differences in outcomes with respect to disciplines; 2) effect sizes were lower when instructor-generated exams were used versus concept inventories with both types of courses (perhaps because concept inventories tend to require more higher-order thinking skills); 3) effect sizes were not significantly different in nonmajors versus majors courses or in lower versus upper-division courses; and 4) although active learning had the greatest positive effect in smaller-enrollment courses, effect sizes were higher with active learning at all enrollment sizes. Two types of analyses, calculation of fail-safe numbers and funnel plots, supported a lack of publication bias (tendency to not publish studies with low effect sizes). Finally, the authors demonstrated that there were no statistically significant differences in effect sizes despite variation in the quality of the controls on instructor and student equivalence, supporting the important conclusion that the differences in effectiveness between the two methods were not instructor dependent.In one of the more compelling sections of this meta-analysis, the authors translated the relatively dry numbers resulting from statistical comparisons to potential impacts on the lives of the students taking STEM courses. For example, for the 29,300 students reported for the lecture treatments across all students, the average difference in failure rates (21.8% in active learning vs. 33.8% with lecture) suggests that 3516 fewer students would have failed if enrolled in an active-learning course. This and other implications for the more beneficial impact of active learning on STEM students led the authors to state, “If the experiments analyzed here had been conducted as randomized controlled trials of medical interventions, they may have been stopped for benefit.” That is, the control group condition would have been halted because of the clear, beneficial effects of the treatment. The authors conclude by suggesting additional important implications for future undergraduate STEM education research. It may no longer be justified to conduct more “first-generation” research comparing active-learning approaches with traditional lecture; rather, for greater impact on course design, second-generation researchers should focus on what types and intensities of exposure to active learning are most effective for different students, instructors, and topics.This provocative commentary by Carl Weiman highlights the major findings reported in the Proceedings of the National Academy of Sciences by Freeman et al. (2014) and underscores the implications. The graphical representations displaying the key data on effect sizes and failure rates presented in the Freeman et al. meta-analysis are redrawn in the commentary in a way that is likely to be more familiar to the typical reader, making the differences in outcomes for active learning versus lecture appear more striking. Weiman concludes by elaborating on the important implications of the meta-analysis for college-level STEM educators and administrators, suggesting that it “makes a powerful case that any college or university that is teaching its STEM courses by traditional lectures is providing an inferior education to its students. One hopes that it will inspire administrators to start paying attention to the teaching methods used in their classrooms … establishing accountability for using active-learning methods.”National societies, committee reports, and accrediting bodies recommend that engineering curricula be designed to prepare future engineers for the complex interdisciplinary nature of the field and for the multitude of skills and perspectives they will need to be successful practitioners. The authors posit that case-based instruction, with its emphasis on honing skills in solving authentic, interdisciplinary, and ill-defined problems, aligns well with these recommendations. However, the methodology is still relatively underutilized, and its effectiveness is underexamined. This article describes a study designed to advance these issues by comparing lecture- and case-based methods within the same offering of a 72-student, upper-level, required course in mechanical engineering.The study used a within-subjects, posttest only, A-B-A-B research design across four key course topics. That is, two lecture-based modules (the A or baseline phases) alternated with case-based modules (the B or treatment phases). Following each module, students responded to open-response quiz questions and a survey about learning and engagement (adapted from the Student Assessment of Learning Gains instrument). The quiz questions assessed ability to apply knowledge to problem solving (so-called “traditional” questions) and ability to explain the concepts that were used (“conceptual” questions). This study design had the advantage that the same students experienced both the baseline and treatment conditions twice. The authors describe in detail the pedagogical approaches used in both sets of the A and B phases.The quizzes were scored by independent raters (with high interrater reliability) on a 0–3 scale; scores were analyzed using appropriate statistical methods. Survey items were analyzed using a principal-components factor analysis; composite scores were generated for a learning confidence factor and an engagement–connections factor. Analyses revealed that the two pedagogical approaches had similar outcomes with respect to the traditional questions, but conceptual understanding scores (indicating better understanding of the concepts that were applied to problem solving) were significantly higher for the case-based modules. Students reported that they appreciated how cases were better than lecture in helping them make connections to real-world concerns and see the relevance of what they were learning, but there were no significant differences in students’ perceptions of their learning gains in the case-based versus the lecture modules. The authors note that many studies have likewise demonstrated that students’ perceptions of their learning gains in more learner-centered courses are often not accurate reflections of the actual learning outcomes.The authors conclude that while these results are promising indications of the effectiveness of case-based instruction in engineering curricula, the studies need to be replicated across a number of semesters and in different engineering disciplines and extended to assess the long-term effect of case-based instruction on students’ ability to remember and apply their knowledge.Although this study was limited to an engineering context, the case-based methodologies and research design seem well-suited for use in action research in other disciplines.Well-documented challenges to conceptual change faced by students of evolution include the necessity of unseating existing naïve theories (such as natural selection having purposiveness), having the ability to view the complex and emergent nature of evolutionary processes through systems-type thinking, and being able to see the connections between evolutionary content learned in the classroom and everyday life events that can facilitate appreciation of its importance and motivate learning. To help students meet these challenges, the authors adapted a pedagogical model called Teaching for Transformative Experiences in Science (TTES) in the course of instruction on six major concepts in evolutionary biology. This article reports on a comparison of the effectiveness of TTES approaches in fostering conceptual change and positive affect with that of instruction enhanced with use of refutational texts (RT). Use of RTs to promote conceptual change, a strategy with documented effectiveness, entails first stating a misconception (the term used by the authors), then explicitly refuting it by elaborating on a scientific explanation. By contrast, the TTES model promotes teaching that fosters transformative learning experiences—teaching in which instructors 1) place the content in a context allows the students to see its utility or experiential value; 2) model their own transformative experiences in learning course concepts; and 3) scaffold a process that allows students to rethink or “resee” a concept from the perspective of their previous, related life experiences.The authors designed the study to address three questions relevant to the comparison of the two approaches: would the TTES group (vs. the RT group) demonstrate or report 1) greater conceptual change, 2) higher levels of transformative experience, and 3) differences in topic emotions (more positive affect) related to learning about evolution? The study used three survey instruments, one that measured the types and depth of students’ transformative experiences (the Transformative Experience Survey, adapted from Pugh et al., 2010 ), another that assessed conceptual knowledge (Evolutionary Reasoning Scale; Shulman, 2006 ), and a third that evaluated the emotional reactions of students to the evolution content they were learning (Evolution Emotions Survey, derived from Broughton et al., 2011 ). In addition to Likert-scale items, the Transformative Experience Survey contained three open-ended response questions; the responses were scored by two independent raters using a coding scheme for degree of out-of-school engagement. The authors provide additional detail about the nuances of what these instruments were designed to measure and their scoring schemes and include the instruments in the appendices. The Evolutionary Reasoning Scale and the Evolution Emotions survey were administered as both pre- and posttests, and the Transformative Experience survey was administered only at the end of the intervention. The treatment (TTES, n = 28) and comparison (RT, n = 27) groups were not significantly different with respect to all measured demographic variables and the number of high school or college-level science courses taken.Briefly, the evolutionary biology learning experience that participants were exposed to was 3 d in duration for both the treatment and comparison groups. On day 1, the instructor (the same person for both groups) gave a PowerPoint lecture on the same six evolutionary concepts, with illustrative examples. For the treatment group only, the instructor drew from his own transformative experiences in connection with the illustrative examples, describing how he used the concepts, what their value was to him, and how each had expanded his understanding and perception of evolution. On days 2 and 3 for the treatment group, the students and instructor engaged in whole-class discussions about their everyday experiences with evolution concepts (and related misconceptions) and their usefulness; the instructor scaffolded various “reseeing” experiences throughout the discussions. For the comparison group, misconceptions and refutations were addressed in the course of the day 1 lecture, and on days 2 and 3, the participants read refutational texts and then took part in discussions of the texts led by the instructor.Survey results and accompanying statistical analyses indicated that both groups exhibited gains (with significant t statistics) in understanding of the evolution concepts as measured by the Evolutionary Reasoning Scale (Shulman, 2006 ). However, the gains were greater for the treatment (TTES) group: effect size, reported as a value for eta-squared, η2, equaled 0.29. The authors point out by way of context for this outcome that use of RTs, along with follow-up discussions that contrast misconceptions with scientific explanations, has been previously shown to be effective in promoting conceptual change; thus, the comparison was with a well-regarded methodology. Additionally, the Transformation Experience survey findings indicated higher levels of transformative experience for the TTES group participants; they more extensively reported that the concepts had everyday value and meaning and expanded their perspectives. The TTES group alone showed pre- to posttest gains in enjoyment while learning about evolution, a positive emotion that may have classroom implications in terms of receptivity to learning about evolution and willingness to continue study in this and related fields.The authors conclude that the TTES model can effectively engage students in transformative experiences in ways that can facilitate conceptual change in content areas in which that change is difficult to achieve. In discussing possible limitations of the study, they note in particular that the predominance of female study participants (71% of the total) argues for its replication with a more diverse sample.I invite readers to suggest current themes or articles of interest in life sciences education, as well as influential papers published in the more distant past or in the broader field of education research, to be featured in Current Insights. Please send any suggestions to Deborah Allen (ude.ledu@nellaed).  相似文献   

9.
This study tests the hypothesis that undergraduates who peer teach genetics will have greater understanding of genetic and molecular biology concepts as a result of their teaching experiences. Undergraduates enrolled in a non–majors biology course participated in a service-learning program in which they led middle school (MS) or high school (HS) students through a case study curriculum to discover the cause of a green tomato variant. The curriculum explored plant reproduction and genetic principles, highlighting variation in heirloom tomato fruits to reinforce the concept of the genetic basis of phenotypic variation. HS students were taught additional activities related to mole­cular biology techniques not included in the MS curriculum. We measured undergraduates’ learning outcomes using pre/postteaching content assessments and the course final exam. Undergraduates showed significant gains in understanding of topics related to the curriculum they taught, compared with other course content, on both types of assessments. Undergraduates who taught HS students scored higher on questions specific to the HS curriculum compared with undergraduates who taught MS students, despite identical lecture content, on both types of assessments. These results indicate the positive effect of service-learning peer-teaching experiences on undergraduates’ content knowledge, even for non–science major students.  相似文献   

10.
Successful learning outcomes require the integration of content and meaningful assessment with effective pedagogy. However, development of coherent and cohesive curriculum is seemingly overwhelming even to experienced teachers. Obviously this creates a barrier to successful student learning. Understanding by Design (UbD) overcomes this impasse by providing concise and practical guidance for experienced and inexperienced teachers. In programs sponsored by the National Science Foundation and the National Institutes of Health, teams composed of University of Wyoming graduate students and science teachers from grades 6 to 9 designed motivating, inquiry-based lesson plans intended to get students to think and act like scientists. In this process, teams utilized principles outlined in UbD with great success. UbD describes a practical and useful “backward” design process in which anticipated results are first identified; acceptable evidence for learning outcomes is established and, only then, are specific learning experiences and instruction planned. Additionally, UbD provides procedures to avoid content overload by focusing on “enduring principles.” WHERE, the UbD sieve for activities, was used effectively to develop tasks that are engaging, that are consistent with state educational standards, and that promote self-directed, life-long learning.  相似文献   

11.
As research faculty with expertise in the area of host–pathogen interactions (HPI), we used a research group model to effect our professional development as scientific educators. We have established a working hypothesis: The implementation of a curriculum that forms bridges between our seven HPI courses allows our students to achieve deep and meaningful learning of HPI concepts. Working collaboratively, we identified common learning goals, and we chose two microorganisms to serve as anchors for student learning. We instituted variations of published active-learning methods to engage students in research-oriented learning. In parallel, we are developing an assessment tool. The value of this work is in the development of a teaching model that successfully allowed faculty who already work collaboratively in the research area of HPI to apply a “research group approach” to further scientific teaching initiatives at a research university. We achieved results that could not be accomplished by even the most dedicated instructor working in isolation.  相似文献   

12.
Traditional courses for graduate students in the biological sciences typically span a semester, are organized around the fundamental concepts of a single discipline, and are aimed at the needs of incoming students. Such courses demand significant time commitment from both faculty and course participants; thus, they are avoided by a subset of the academic science community. Course length and the high barrier to course development are inhibitory to the creation of new courses, especially in emerging areas of biology that may not merit a full-semester approach. Here, we describe the implementation of a new, graduate-level course format, created to allow for rapid development of courses, provide meaningful educational experiences for both junior and senior graduate students and other members of our community, and increase the breadth of faculty involvement in teaching. These courses are greatly abbreviated, and thus termed “nanocourses.” Based on experience from the first three semesters, nanocourses seem to accomplish the initial goals that we set. Importantly, nanocourses engaged students, postdoctoral fellows, faculty, and others, thus providing a new mechanism to educate our community in response to rapid advances in biology. In our view, nanocourses are a useful tool that can supplement graduate-level curricula in varied ways.  相似文献   

13.
Applying a structural equations modelling methodology, the study analyses the relationships and effects of self-regulated learning (social interaction learning strategies and motivation) and first-year university experiences on permanence in the sophomore year. The participants are 239 first-year students in different Engineering degrees at a public university in south-eastern Spain. Two alternative structural models are evaluated, showing the superiority of the model where first-year university experiences completely mediate the effects of self-regulated learning on permanence. Motivation and social interaction learning strategies show direct effects on first-year university experiences, and first-year university experiences, in turn, show direct effects on permanence; additionally, both motivation and social interaction learning strategies have indirect effects on permanence via first-year university experiences. The noteworthy theoretical implications of the results are discussed, as well as the teaching methodology and support services provided to first-year university students.  相似文献   

14.
To understand evolutionary theory, students must be able to understand and use evolutionary trees and their underlying concepts. Active, hands-on curricula relevant to macroevolution can be challenging to implement across large college-level classes where textbook learning is the norm. We evaluated two approaches to helping students learn macroevolutionary topics. Treatment 1 is a laboratory for the software program EvoBeaker designed to teach students about evolutionary trees. We tested Treatment 1 among nine college-level biology classes and administered pre/posttests to assess learning gains. We then sought to determine whether the learning gains from Treatment 1 were comparable to those derived from an alternate hands-on treatment, specifically the combination of a prerecorded lecture on DVD and paper-based activity based on Goldsmith's Great Clade Race (Treatment 2). Comparisons of pre- and posttests among participants using either Treatment 1 or 2 show large learning gains on some misconceptions and skills beyond knowledge gained from reading standard textbook entries. Both treatments performed equivalently in overall learning gains, though both had areas where they performed better or worse. Furthermore, gains among students who used Treatment 1 representing a wide range of universities suggest that outcomes are potentially applicable to a variety of "real-world" biology classes.  相似文献   

15.
This article describes and assesses the effectiveness of a 3-yr, laboratory-based summer science program to improve the academic performance of inner-city high school students. The program was designed to gradually introduce such students to increasingly more rigorous laboratory experiences in an attempt to interest them in and model what “real” science is like. The students are also exposed to scientific seminars and university tours as well as English and mathematics workshops designed to help them analyze their laboratory data and prepare for their closing ceremony presentations. Qualitative and quantitative analysis of student performance in these programs indicates that participants not only learn the vocabulary, facts, and concepts of science, but also develop a better appreciation of what it is like to be a “real” scientist. In addition, the college-bound 3-yr graduates of this program appear to be better prepared to successfully academically compete with graduates of other high schools; they also report learning useful job-related life skills. Finally, the critical conceptual components of this program are discussed so that science educators interested in using this model can modify it to fit the individual resources and strengths of their particular setting.  相似文献   

16.
Instructors attempting new teaching methods may have concerns that students will resist nontraditional teaching methods. The authors provide an overview of research characterizing the nature of student resistance and exploring its origins. Additionally, they provide potential strategies for avoiding or addressing resistance and pose questions about resistance that may be ripe for research study.
“What if the students revolt?” “What if I ask them to talk to a neighbor, and they simply refuse?” “What if they do not see active learning as teaching?” “What if they just want me to lecture?” “What if my teaching evaluation scores plummet?” “Even if I am excited about innovative teaching and learning, what if I encounter student resistance?”
These are genuine concerns of committed and thoughtful instructors who aspire to respond to the repeated national calls to fundamentally change the way biology is taught in colleges and universities across the United States. No doubt most individuals involved in promoting innovative teaching in undergraduate biology education have heard these or variations on these fears and concerns. While some biology instructors may be at a point where they are still skeptical of innovative teaching from more theoretical perspectives (“Is it really any better than lecturing?”), the concerns expressed by the individuals above come from a deeply committed and practical place. These are instructors who have already passed the point where they have become dissatisfied with traditional teaching methods. They have already internally decided to try new approaches and have perhaps been learning new teaching techniques themselves. They are on the precipice of actually implementing formerly theoretical ideas in the real, messy space that is a classroom, with dozens, if not hundreds, of students watching them. Potential rejection by students as they are practicing these new pedagogical skills represents a real and significant roadblock. A change may be even more difficult for those earning high marks from their students for their lectures. If we were to think about a learning progression for faculty moving toward requiring more active class participation on the part of students, the voices above are from those individuals who are progressing along this continuum and who could easily become stuck or turn back in the face of student resistance.Unfortunately, it appears that little systematic attention or research effort has been focused on understanding the origins of student resistance in biology classrooms or the options for preventing and addressing such resistance. As always, this Feature aims to gather research evidence from a variety of fields to support innovations in undergraduate biology education. Below, we attempt to provide an overview of the types of student resistance one might encounter in a classroom, as well as share hypotheses from other disciplines about the potential origins of student resistance. In addition, we offer examples of classroom strategies that have been proposed as potentially useful for either preventing student resistance from happening altogether or addressing student resistance after it occurs, some of which align well with findings from research on the origins of student resistance. Finally, we explore how ready the field of student resistance may be for research study, particularly in undergraduate biology education.  相似文献   

17.
The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students’ learning, we incorporated image tests into our introductory cell biology course. Groups of students used a single text dealing with signal transduction, which was supplemented with images made in one of three iconographic styles. Typically, we employed realistic renderings, using computer-generated Protein Data Bank (PDB) structures; realistic-schematic renderings, using shapes inspired by PDB structures; or schematic renderings, using simple geometric shapes to represent cellular components. The control group received a list of keywords. When students were asked to draw and describe the process in their own style and to reply to multiple-choice questions, the three iconographic approaches equally improved the overall outcome of the tests (relative to keywords). Students found the three approaches equally useful but, when asked to select a preferred style, they largely favored a realistic-schematic style. When students were asked to annotate “raw” realistic images, both keywords and schematic representations failed to prepare them for this task. We conclude that supplementary images facilitate the comprehension process and despite their visual clutter, realistic representations do not hinder learning in an introductory course.  相似文献   

18.
Laboratory education can play a vital role in developing a learner''s autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a “mutation” method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the “mutations”; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional “cookbook”-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class.  相似文献   

19.
We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p < 0.001);. The higher-achieving students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning.  相似文献   

20.
Three approaches to molecular phylogenetics are demonstrated to biology students as they explore molecular data from Homo sapiens and four related primates. By analyzing DNA sequences, protein sequences, and chromosomal maps, students are repeatedly challenged to develop hypotheses regarding the ancestry of the five species. Although these exercises were designed to supplement and enhance classroom instruction on phylogeny, cladistics, and systematics in the context of a postsecondary majors-level introductory biology course, the activities themselves require very little prior student exposure to these topics. Thus, they are well suited for students in a wide range of educational levels, including a biology class at the secondary level. In implementing this exercise, we have observed measurable gains, both in student comprehension of molecular phylogeny and in their acceptance of modern evolutionary theory. By engaging students in modern phylogenetic activities, these students better understood how biologists are currently using molecular data to develop a more complete picture of the shared ancestry of all living things.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号