首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>用数学归纳法证明数学命题时的基本步骤:(1)检验n=n_0(n_0∈N*)时成立;(2)假设n=k(k∈N*,k≥n_0)时成立,由n=k时成立推导n=k+1时成立,于是对一切n∈N*,n≥n_0,命题都成立,这种证明方法叫作数学归纳法。要注意由归纳假设到检验n=k+1的递推。运用数学归纳法证明命题要分为两步,第一步是递推的基础,第二步是递推的依据,这两步缺一不可。  相似文献   

2.
上接本刊第四期《转化思想是解答数学题的重要策略 (一 )》6 .前进转化为后退在解题时有些问题难以入境 ,就以退求进 ,就是前进转化后的目的 .【例 11】 试比 2 0 0 42 0 0 3与 2 0 0 3 2 0 0 4 的大小 .解 :先后退到比较 ,2 1 >12 ,3 2 >2 3,43<3 4,5 4<45,6 5<5 6 ,…再前进到猜想 :当n≥ 3 ,(n∈N+)时 ,有 (n + 1) n 相似文献   

3.
数学归纳法是一种重要的数学方法,运用数学归纳法证题的步骤是:(1)证明当n取第一个值n0(n0≥1)时,命题成立;(2)假设n=k(k∈N*且k≥n0)时命题成立,从而推出当n=k+1时,命题也成立.根据(1)、(2)可知,对一切n∈N*(n≥n0)命题成立.数学归纳法的第一步是验证命题的基础,第二步是论证命题的依据(传递性成立),两个步骤密切相关,缺一不可.需要注意的是:步骤(1)一般选取命题中最小的正整数n0作为起始值进行验证;步骤(2)推证当n=k+1时命题成立的前题,必须是当n=k时命题成立这个归纳假设,否则推理无效.作差法若命题中有关于n的连加式或数列的前n项和,则…  相似文献   

4.
正在高中数学的学习中,数学归纳法常用来证明与正整数有关的命题,这个证明过程我们可以归纳为以下的几个步骤:(1)先证明当n取第一个值n0时,命题成立.这个步骤很简单,学生们都能写出来.(2)假设当n=k(k∈N*,k≥n0)时,命题成立,再证明当n=k+1时命题也成立.这是整个证明过程的核心步骤,涉及到一些变形,相对比较难.最后根据一、二步骤中的内容进行概括归纳,当n≥n0,n∈N*时,命题也成立.  相似文献   

5.
应用数学归纳法证明的一般过程是:(1)证明当n取第一个值n。时,命题成立;(2)假设当n=k(k∈N,k≥n0)时,命题成立,证明当n=k+1时命题也成立;(3)根据(1)和(2),当n≥n0且n∈N时,命题成立.  相似文献   

6.
数学归纳法是证明与自然数有关的数学命题的一种严密的证题方法。其证题步骤为:(1)证明当n取第一个值n_0(例如n_0=1或2等)时结论正确;(2)假设当n=k(k∈N,k≥n_0)时结论正确,证明当n=k+1时结论也正确。对于初学者来说,稍不注意,就会出现  相似文献   

7.
定理nn-1[(m+1)n-1n-1]<∑mi=11niαn-αn-1(α>1,n∈N,n≥2).证明由二项式定理得(α-1n)n=∑nr=0(-1)rCrn1nrαn-r,∵Crn(1n)r-Cr+1n(1n)r+1=Cr+1n(1n)r+1·nr+rn-r≥0,∴Crn(1n)r≥Cr+1n(1n)r+1(当且仅当r=0时等号成立).若n为偶数时,(α-1n)n=αn-αn-1+(C2n1n2αn-2-C3n1n3·αn-3)+…+(Cn-2n1nn-2α2-Cn-1n1nn-1α)+Cnn1nn>αn-αn-1;若n为奇数时,(α-1n)n=αn-αn-1+(C2n1n2αn-2-C3n1n3·αn-3)+…+(Cn-1n1nn-1α-Cnn1nn)>αn-αn-1.2定理的证明(1)∑m…  相似文献   

8.
数学归纳法是数学中证明与自然数有关的命题时和常用的重要证明方法,它是以归纳公理或最小数原理为理论依据的。其基本步骤是: 1~0归纳奠基:如证P(n_0)或P(n_0),P(n_0+1),……P(n_0+t)为真(n_0,t∈N)。 2~0归纳假设:如假设n=k(k≥n_0)或n=k,k—1,…k—t 时P(n)为真(k≥n_0+t)。 3~0归纳推理:根据2~0的归纳假设推出P(n)对n=k+1时也成立。 4~0归纳结论:通过上述三步骤(实质上只两步),依据归纳公理或最小数原理等有关原理推知  相似文献   

9.
证明与正整数有关的命题时,常用数学归纳法,用数学归纳法证明的步骤是:(1)证明当n取第一个值n_0(n_0是满足命题的最小正整数)时,命题成立.(2)假设当n=k(k≥n_0,k∈N~*)时命题成立,证明当n=k+1时命题也成立.(3)由(1)(2)可知,命题对于从n_0开始的所有的正整数都成立.  相似文献   

10.
第一试一、选择题(每小题6分,共36分)1.已知集合M={a1,a2,…,a2n+1},N={-22n,-22n-1,…,-2,0,2,…,22n}.若单射f:M→N满足f(a1)+f(a2)+…+f(a2n+1)=0,则这样的单射f有()个.(A)(2n+1)!C2nn(B)(2n+1)!C2nn+1(C)(2n+1)!C42nn++11(D)(2n+1)!C42nn2.已知θ1,θ2,…,θn∈0,2π,令M=(∑ni=1tanθi)(∑ni=1cotθi),N=(∑ni=1sinθi)(∑ni=1cscθi).则M与N的大小关系是().(A)M≥N(B)M≤N(C)M=N(D)不确定3.已知正整数数列{an}满足an+2=a2n+1+a2n(n≥1).若正整数m满足am=2005,则所有可能的m构成的集合是().(A){1,2}(B){1,2,3}(C){1,2,3,4}…  相似文献   

11.
<正>数学归纳法的实质在于:将一个无法(或很难)穷尽验证的与正整数n有关的命题转化为证明两个普通命题:(1)证明当n取第一个值n_0(n_0∈N*)时命题成立;(2)假设n=k(k≥n_0,k∈N*)时命题成立,证明当n=k+1时命题也成立.有些表面看来与数学归纳法无关(或不易直接用数学归纳法证明)的命题,如能将其推广或加强,转化为一个更强的命题,而加强后的命题用数学归纳法易于证明,这样原来的命题就间接  相似文献   

12.
13.
学生学了数学归纳法后,既掌握了一种新的数学论证方法,又开拓了知识领域,学会了新的技能。 数学归纳法原理可叙述如下:对于某一个与自然数n有关的命题p(n)(n≥n_0且n∈N),①如果命题当n=n_0时证明成立;②假设当n=k(k∈N,k≥n_0)时命题成立,可推出n=k 1时命题成立,即p(k)(?)p(k 1),  相似文献   

14.
在近年的高考数学试题中 ,常以数列递推式中不等式的证明作为能力型试题 .这类问题综合性强、思维容量大、能力要求高 ,是同学们感到很棘手的一类问题本文通过具体的例子说明解这类问题的几种常用方法 .一、数学归纳法例 1 已知数列 an ,对任意n∈N ,均有an >0 ,且a2 n ≤an-an + 1 ,求证 :当n≥ 2时 ,an <1n +1.证明  ( 1)当n =2时 ,a2 ≤a1 ( 1-a1 )≤ a1 +( 1-a1 )22=14 <13 =12 +1.命题成立 .( 2 )假设当n =k(k≥ 2 )时 ,命题成立 ,即有   ak <1k+1≤ 13 (k≥ 2 ) .当n =k +1时 ,由题设有ak+ 1 ≤ak-a2 k.令 f(x) =x-x2 ,则f(x) =…  相似文献   

15.
一、证明不等式例1已知n为大于1的自然数,求证:(1+13)(1+15)…(1+12n-1)>2n+1√2.证明因为欲证的不等式的左边和右边都为正,故可构造数列狖an狚,并令an=(1+13)(1+15)…(1+12n-1)2n+1√2.显然,an>0,a2=835√>1.若对任意n≥2,nN,都有an>1,则原不等式得证.∵an+1an=(1+13)(1+15)…(1+12n+1)·2n+1√2n+3√·(1+13)(1+15)…(1+12n-1)=2n+2(2n+1)(2n+3)√>2n+2(2n+1)+(2n+3)2=1(n≥2),∴an+1>an>an-1>…>a2>1,故原不等式成立.二、解不等式例2解不等式4x+log3x+x2>5.解设f(x)=4x+log3x+x2,则其定义域为(0,+∞),且在定义域内是增函数.又∵f(1)=5…  相似文献   

16.
高中代数下册(必修本)第七页例2: 已知:a、6∈R~+,并且a≠b。求证:a~5+b~5>a~3b~2+a~2b~3 由其指数特征及证明中的差式(a~5+b~5)-(a~3b~2+a~2b~3)=(a~2-b~2)(a~3-b~3)不难得到命题一:若a_1,a_2∈(?)。m,k∈N,m>k, 则 a_1~m+a_2~m≥a_1~ka_2~(m-k)+a_1~(m-k)a_2~k(当且仅当a_1=a_2时等号成立)。证法与上类似。运用命题一又可得到命题二:若a_1,a_2,……,a_n∈R~-,m,k∈N,m>k,则 (a_1~m+a_2~m+……+a_n~m)/n≥(a_1~k+a_2~k+……+a_n~k)/n。a_1~(m-k)+a_2~(m-k)+……+a_n~(m-k)/n(当且仅当a_1=a_2=……=a_n时等号成立)。证明;把对a_1,a_2,……,a_n两两运用命题一得到的n(n-1)/2个不等式:a_1~m+a_2~m≥a_1~ka_2~(m-k)+  相似文献   

17.
高考题1:(陕西·文·21)设函数f(x)=xn+bx+c(n∈N+,b,c∈R).(1)设n≥2,b=1,c=-1,证明:f(x)在区间(12,1)内存在唯一零点;(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;(3)设n=2,若对任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求b的取值范围.高考题2:(陕西·理·21)设函数fn(x)=xn+bx+c(n∈N+,b,c∈R).(1)设n≥2,b=1,c=-1,证明:fn(x)在区间(12,1)内存在唯一零点;  相似文献   

18.
问题[1]  设a1,a2 ,a3,a4 ∈R+ ,求证a31a2 +a3+a4+a32a3+a4 +a1+a33a4 +a1+a2+a34 a1+a2 +a3≥(a1+a2 +a3+a4 ) 21 2 ①文 [2 ]应用基本不等式 ,将不等式①推广为 :定理 1 设a1,a2 ,… ,an∈R+ ,a1+a2 +… +an=s,k∈N ,k≥ 2 ,则有ak1s-a1+ak2s-a2+… +akns-an≥ sk - 1(n -1 )nk- 2 ②其中等号当且仅当a1=a2 =… =an 时成立。定理 2 设a1,a2 ,… ,an∈R+ ,a1+a2 +… +an=s,k∈N ,k≥ 2 ,则有∑ni=1akis-ai≥ 1n -1 ∑ni=1ak- 1i ③其中等号当且仅当a1=a2 =… =an 时成立。本文给出两点注记 :注记 1 定理 1的条件可以放宽为 :设ai≥ …  相似文献   

19.
数学归纳法证不等式常用到放大或缩小的策略,通过放缩把命题强化.由于更强的命题提供更强的归纳假设,所以强化以后的命题更容易用数学归纳法证明.如何放缩使命题强化,具体问题要具体分析.本文给出如下3种常用的方法,供参考.例1求证:31!+42!+53!+…+n(n+2)!<21(n∈N+)分析:设n=k时有31!+42!+…+k(k+2)!<21,则n=k+1时,31!+…+(k+k2)!+k+1(k+3)!<21+(kk++31)!,无法判断n=k+1时命题是否成立,思路受阻.然而31!+42!+…+(n+n2)!<23!+43!+…+(nn++21)!=3-13!+44-!1+…+(n(+n+2)2)-!1=12!-31!+31!-41!+…+(n+11)!-1(n+2)!=21!-(n+12)!=12-(n+12)!<21…  相似文献   

20.
<正>数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法。它的基本步骤是:(1)验证n=n0时,命题成立(归纳奠基);(2)在假设当n=k(k≥n0,k∈N+)时命题成立的前提下,推出当n=k+1时,命题成立(归纳递推)。根据(1)(2)可以断定命题对一切大于等于n0的正整数n都成立。数列问题是与正整数有关的问题,本文就来谈谈数学归纳法在数列中的应用。例1已知正项数列{bn}的前n项和  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号