首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《考试》1998,(Z1)
求曲线c关于定直线l的对称曲线方程,或者求曲线c关于定点M的对称曲线方程,这一类问题都可以用轨迹法解决。若给定曲线c的方程F(x,y)=0及直线l的方程Ax By c=0,求曲线c关于l的对称曲线c′的方程,可设c′上一动点P(x,y),P点关于l的对称点Q(x_0,y_0)在曲线c上,由于P、Q关于l对称,故P、Q连线斜率  相似文献   

2.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

3.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

4.
文[2]作为文[1]的续文,在直线方程(x_0x)/(a~2) (y_0y)/b~2=1的三种几何意义探讨启发下,给出了直线方程(x_0x)/(a~2)-(y_0y)/(b~2)=1的几何意义.本文再给出直线方程y_0y=p(x x_0)的几何意义,以告对此类问题的探讨圆满解决.  相似文献   

5.
在涉及点或曲线关于直线对称的问题,一般运用中垂线的性质列出方程联立求解.但如果直接利用下述对称点坐标之间的关系,则可以简化求解过程,迅速得出结论.设曲线 c:F(x,y)=0关于直线1:y=kx+m(k≠0)的对称曲线为c′,点 A(x,y)∈c 关于1的对称点为 A′  相似文献   

6.
逆应用数学知识(定理、定义、公式、法则等)解某些题,能使解法简捷而巧妙,但也有其难处。下面先举例说明其巧,再道其难。巧一、概念的逆应用例1.若a/3+b/2=6/k(a、b、k均为常数,则直线ax+by=1必过一定点。 [思考] 一般用直线束方程解,由条件求得b=12/k-2a/3代入ax+by=1,化成((12/k)y-1)+a(x-(2/3)y)=0,它是过的交点的直线束方程,再确定其交点为已知即可,但较繁,若逆应用“曲线与方程”的概念点(x_0,y_0)在曲线f(x,y)=0上(?)f(x_0,y_0)=0证之则较简捷。  相似文献   

7.
文[1]、[2]、[3]分别给出了直线方程:x_0x y_0y=r~2,(x_0x)/a~2 (y_0y)/b~2=1,(x_0x)/a~2-(y_0y)/b~2=1的3种几何意义,笔者认为直线方程:y_0y=p(x_0 x)(p>0)也有类似的几何意义,而且它揭示了圆及二次曲线内在的一般规律.定理1:若点 P(x_0,y_0)在抛物线 y~2=  相似文献   

8.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

9.
倾斜角为a=(kπ)/4的直线有四条l_1:x=a,l_2:y=b,l_3:x y-b=0,l_4:x-y b=0. 设(x_0,y_0)关于直线Ax By C=0的对称点为(x′,y′).应用对称点坐标公式可分别求得关于l_1-l_4的对称点坐标:  相似文献   

10.
我们熟知,直线的点斜式方程 y-y_1=k(x-x_1)与参数方程x=x_1 tCosα y=y_1 tSinα(其中 tgα=k)对应,而园锥曲线x~2/a~2 y~2/b~2=1,x~2/a~2-y~2/b~2=1和 y~2=2px分别与参数方程 x=aCost y=bsint,x=aSect,y=btgt,和x=2pt~2 y=2pt 对应。在直线的参数方程x=x_1 tCosα y=y_1 tSinα中,参数 t 有简单明确的几何意义——t 是对应的动点 P(x,y)到定点 M(x_1,y_1)的有  相似文献   

11.
[定理1] 设曲线a:F(x,y)=0关于直线l:Ax+By+C=0的对称曲线是a’,则a’的方程为 F(x-(2A(Ax+By+C))/(A~2+B~2),y-(2B(Ax+By+C))/(A~2+B~2))=0 (1) 证:设a上任一点P(x_1,y_1)关于l的对称点是M(x,y).则PM的中点((x+x_1)/2,(y+y_1)/2)∈l,且PM⊥l.当A≠0且B≠0时,  相似文献   

12.
用二阶偏导数来判定函数f(x,y)在其驻点(x,y_0)处的极值,有时可能有判别式f_(xy)~2(x_0,y_0)-f_(xx)(X_0,y)·f_y(x,y_0)等于零的情况.这时,原来的判别法失效,从而需要作出进一步的考察.为此,本文特给出一种利用一般的高阶偏导数的判别方法.设函数f(x,y)在点(x,y_0)处可展开成n阶泰勒公式,并将其写成△f=P(h,k)+ε.式中P_n(h,k)=sum from m=1 to n(1/(m+1)!)(h((?)/(?)x)+(k(?)/(?)y))~(m 1)f(x,y_0);当ρ趋于零时ε趋于零.同时还设函数f(x,y)在点(x,y_0)处所有阶数不大于某个正整数N的偏导数都等于零,或在点(x,y_0)的某个邻域内所有阶数大于N+1的偏导数都恒等于零.那末,二元函数极值的高阶偏导数判别法可简单地归结为:若P_N(h,k)恒正或恒负,则f(x,y)在点(x_0,y_0)取得极值;若P_N(h,k)有正有负,则f(x,y)在点(x_0,y_0)处不取极值.  相似文献   

13.
定理设P(x_0,y_0)为非退化曲线f(x,y)=ax~2 2bxy cy~2 2dx 2ey f=0所在平面上一点.若过P向曲线f(x,y)=0所引切线存在,则切线方程为: [(ax_0 by_0 c)(x-x_0) (bx_0, cy_0 e)(y-y_0)]~2 =[a(x-x_0)~2 2b(x-x_0) c(y-y_0)~2] ·f(x_0,y_0)。 (1) 证设由P引f(x,y)=0的切线,切点为  相似文献   

14.
在贵刊1991年第5期上,张兆麟、许秀生两同志“用代换法求轴对称”(以下简称张文)一文中,阐述了当b=±1时,求已知点P (x_0,y_0)关于直线y=kx m的对称点p′(x,y),可直接用代换法确定P′点的位置。作为特例,这不失为一种好方法。本文拟就一般情况谈谈用代换法求对轴称,权作  相似文献   

15.
第一章坐标法、曲线与方程一、基础训练 (一)选择题 1.点P(a,b)关于直线y=k的轴对称点的坐标为( ) (A)(-a,-b) (B)(a,k+b) (C)(a,k-b) (D)(a,2k-b) 2.点P(a,b)关于点(h,k)中心对称的点的坐标为( ) (A)(-a,-b) (B)(-b,-k) (C)(a+h,b+k) (D)(2h-a,2k-b) 3.曲线f(x,y)=0关于直线x=-2成轴对称的曲线方程是( )(A)f(4-x,y)=0 (B)f(-4-x,y)=0  相似文献   

16.
平面上的椭圆、双曲线、抛物线的标准方程为x~2/a~2±y~2/b~2=1、y~2=2px。在其曲线上的点(x_0,y_0)处的切线方程可表示为x_0x/a~2±y_0y/b~2=1、y_0y=p(x x_0)的形式。这种形式与原曲线方程有明显的对应关系,便于记忆,并可以推广到平面上高次曲线。为了便于讨论,我们把平面直角坐标系中3次曲线方程的一般形式表示为  相似文献   

17.
<正>我们知道,若点P(x_1,y_1),Q(x_2,y_2)在直线l:f(x,y)=0的两侧,则f(x_1,y_1)·f(x_2,y_2)<0,反之也成立.利用这个性质可巧妙地解决一类直线斜率的范围问题,现举例说明之.  相似文献   

18.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

19.
在直角坐标系下,如果一条直线l经过已知点P_0(x_0,y_0),倾角为a,那么它的参数方程为 {x=x_0 tcosa y=y_0 tsina (t为参数) (*) 这个方程很重要,应让学生很好理解和掌握。 (一) 关于参数t的几何意义方程(*)中,参数t的几何意义是直线l上的定点P_0(x_0,y_0)与l上的任意一点P(x,y)所成的有向线段P_0P的数量P_0P,即t=P_0P。当P_0P与l同向时,有  相似文献   

20.
本文介绍利用直线两点式参数方程来证明比例式的一种规范化有效方法,供参考。一、直线两点式参数方程如图, 设P_1(x_1,y_1)、P(x_2,y_2)、P(x,y)都是直线l上的点,且P_1P/PP_2=λ则(x=x_1+λx_2/1+λ)/(y=y_+λy_2/1+λ)(λ为参数,λ≠-1) 即为过P_1、P_2两点的直线的参数方程。∵由(x_1-x_2)/(x-x_2)=1+λ 及  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号