首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article concentrates on pinning synchronization and adaptive synchronization problems of complex-valued inertial neural networks with time-varying delays in fixed-time interval. First, regarding complex-valued inertial neural networks model as an entirety instead of reducing this system to first-order differential equation, separating the real and imaginary parts of this system into an equivalent real-valued one, and establishing a novel Lyapunov function, the fixed-time stability for the closed-loop error system is guaranteed via partial nodes controlled directly by a new pinning controller which involves the state derivatives and other proper terms. Then, from the point of saving cost and avoiding resources waste, a new pinning adaptive controller is further developed and sufficient condition ensuring the adaptive fixed-time stability for the closed-loop error system is also derived. In the end, the effectiveness of these results is verified by a numerical example.  相似文献   

2.
This paper analyses the weak projective synchronization (WPS) of the parameter mismatched memristive neural networks (MNNs) with stochastic disturbance and time delays via impulsive control. Complete synchronization cannot achieve because of the projective factor and mismatched parameters. Therefore, the WPS of practical MNNs under impulsive control strategy is studied. The augmented systems are built to utilize more information of the system and reduce the constraint conditions. Meanwhile, two types of comparison principles are used owing to the impulsive controller with and without time delays. Then, sufficient criteria for the exponential convergence of systems are obtained under the positive and negative effects of impulses. Finally, the validity of the theoretical results is verified by simulations of different conditions.  相似文献   

3.
This paper focuses on the synchronization of fractional-order complex-valued neural networks (FOCVNNs) with reaction–diffusion terms in finite-time interval. Different from the existing complex-valued neural networks (CVNNs), the reaction–diffusion phenomena and fractional derivative are first considered into the system, meanwhile, the parameter switching (the system parameters will switch with the state) is considered, which makes the presented model more comprehensive. By choosing an appropriate Lyapunov function, the driver and response systems achieve Mittag-Leffler synchronization under a suitable controller. In addition, based on the fractional calculus theorem and the basic inequality methods, a criterion of synchronization for the error system in finite-time interval is derived and the upper bound of the corresponding finite synchronization time can be obtained. Finally, two examples are provided, one is a numerical example to explain the effectiveness of the main results, and the other shows that the results of this paper can be applied to image encryption for any size with high-security coefficient.  相似文献   

4.
This paper analyzes synchronization in finite time for two types of coupled delayed Cohen–Grossberg neural networks (CDCGNNs). In the first type, linearly coupled Cohen–Grossberg neural networks with and without coupling delays are considered, respectively. In the second type, nonlinearly coupled Cohen–Grossberg neural networks both with and without coupling delays are discussed. By designing suitable controllers and using some inequality techniques, several criteria ensuring finite-time synchronization of the CDCGNNs with linear coupling and nonlinear coupling are derived, respectively. Moreover, the settling times of synchronization in finite time for the considered networks are also predicted. In the end, the availability for the acquired finite-time synchronization conditions is confirmed by two selected numerical examples.  相似文献   

5.
This investigation establishes the global synchronization of an array of coupled memristor-based neural networks with delays. The coupled networks that are considered can incorporate both the internal delay in each individual network and the transmission delay across different networks. The coupling scheme, which consists of a nonlinear term and a sign term, is rather general. In particular, it can be asymmetric, and admits the coexistence of excitatory and inhibitory connections. Based on an iterative approach, the problem of synchronization is transformed into solving a corresponding linear system of algebraic equations. Subsequently, the respective synchronization criteria, which depend on whether the transmission delay exists, are derived respectively. Three examples are given to illustrate the effectiveness of the theories presented in this paper. The synchronization of the systems in two examples cannot be handled by existing techniques.  相似文献   

6.
In this paper, we study the synchronization problem of a class of chaotic neural networks with time-varying delays and unbounded distributed delays under stochastic perturbations. By using Lyapunov-Krasovskii functional, drive-response concept, output coupling with delay feedback and linear matrix inequality (LMI) approach, we obtain some sufficient conditions in terms of LMIs ensuring the exponential synchronization of the addressed neural networks. The feedback controllers can be easily obtained by solving the derived LMIs. Moreover, the main results are generalizations of some recent results reported in the literature. A numerical example is also provided to demonstrate the effectiveness and applicability of the obtained results.  相似文献   

7.
In this article, without decomposing the quaternion-valued neural networks (QVNNs) into two complex-valued subsystems or four real-valued subsystems, quasi-projective synchronization of discrete-time fractional-order QVNNs is investigated. To this end, the sign function for quaternion number is introduced and some related properties are given. Then, two inequalities are built according to the nabla fractional difference and quaternion theory. Subsequently, a simple linear quaternion-valued controller is designed, and some synchronization conditions are given by means of our created inequalities. Finally, numerical simulations are given to prove the feasibility and correctness of the theoretical results.  相似文献   

8.
《Journal of The Franklin Institute》2022,359(18):10653-10675
Without considering identical systems, this paper investigates the finite-time lag projective synchronization of nonidentical fractional delayed memristive neural networks (FDMNN) by designing a novel fractional sliding mode controller (SMC). Due to the existence of memristor, the research is under the framework of Filippov solution. We firstly construct a fractional integral sliding mode surface (SMS). Based on sliding mode control theory and Lyapunov stability theorem, a novel fractional SMC is proposed to realize the lag projective synchronization of nonidentical FDMNN in finite time, and the synchronization setting time is less conservative than the existing results. As the special cases, some sufficient conditions are extended to projective synchronization, lag synchronization, anti-lag synchronization of nonidentical FDMNN in finite time, which improve and enrich some existing results. At last, a simulation example is given to prove the validity of the conclusions.  相似文献   

9.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

10.
The complex-valued flow matrix Drazin inverse has recently attracted considerable interest from researchers due to its great academic value. In this paper, a fixed-time convergence integral-enhanced zeroing neural network (FTCIEZNN) model is proposed and investigated for calculating the Drazin inverse of complex-valued flow matrix. Since the FTCIEZNN model possesses fixed-time convergence, its upper limit of convergence time is irrelevant to initial conditions and can be adjusted by specified system parameters. Meanwhile, by adopting the newly designed reformed nonlinear activation function (RNAF) and variable parameters, the FTCIEZNN model converges rapidly in a relatively fast fixed-time and its robustness is dramatically strengthened. In addition, the upper limit of the convergence time in the absence of noise and the upper limit of the steady-state error in the presence of time-varying bounded noise are given by a scrupulous mathematical logic calculation. Furthermore, the outcomes of the numerical simulations demonstrate that the FTCIEZNN model outshines existing zeroing neural network models in calculating complex-valued flow matrix Drazin inverse. Finally, an application based on the FTCIEZNN model in image encryption fully illustrates the practical value of the FCIEZNN model.  相似文献   

11.
In this paper, the issue of exponential synchronization for coupled systems on networks with mixed time-varying delays is concerned. An approach combining Kirchhoff’s matrix tree theorem in graph theory with Lyapunov method and periodically intermittent control is taken to investigate the problem. This method is different from the corresponding previous works. Two different kinds of synchronization conditions in the form of Lyapunov-type theorem and coefficients-type criterion are derived. They both reveal synchronization has a close relation with the topology structure of the network. Finally, the feasibility and effectiveness of the proposed method are illustrated by several numerical simulation figures.  相似文献   

12.
This paper focuses on the synchronization problem of semi-Markovian jumping complex dynamical networks with time-varying coupling delays against actuator failures. In an aim to shrink the treatment of network resources event triggered control strategy is proposed to achieve the synchronization criteria. By constructing Lyapunov–Krasovski functional, some delay dependent criteria that assures the synchronization of CDN are derived with the help of the general integral inequalities. It should be noted that the general integral inequality used here is general than that of Jensen inequality, the Wirtinger-based inequality, the Bessel-Legendre inequality, the Wirtinger-based double integral inequality, and the auxiliary function-based integral inequalities. The resulting LMIs can be easily verified with the help of the available softwares. Finally, simulation results are proposed to verify the effectiveness of the general integral inequality and designed control law.  相似文献   

13.
This article aims to study fixed-time projective lag synchronization(FXPLS) and preassigned-time projective lag synchronization(PTPLS) of hybrid inertial neural networks(HINNs) with state-switched and discontinuous activation functions(DAFs). By constructing new hybrid fixed-time control and based on theory of non-smooth analysis, we achieve novel results on FXPLS for such HINNs. Through designing novel hybrid preassigned-time control, new criteria on PTPLS of the HINNs is also taken into account. And as distinct from recent works, the FXPLS and PTPLS results are established via non-variable substitution and in a more generalized framework than common synchronization, which also has more extensive practical applications. Finally, example simulations are displayed to set forth the validity of the acquired FXPLS and PTPLS.  相似文献   

14.
This paper investigates the problem of master–slave synchronization of chaotic Lur’e systems (CLSs) with time delays by sampled-data control. First, a novel Lyapunov–Krasovskii functional (LKF) is constructed with some new augmented terms, which can fully capture the system characteristics and the available information on the actual sampling pattern. In comparison with existing results, the constraint condition of the positive definition of the LKF is more relax, since it is positive definite only requiring at sampling instants. Second, based on the LKF, a less conservative synchronization criterion is established. Third, the desired estimator gain can be designed in terms of the solution to linear matrix inequalities (LMIs). The obtained conditions ensure the master–slave synchronization of CLSs under a longer sampling period than remarkable existing works. Finally, three numerical simulations of Chua’s circuit and neural network are provided to show the effectiveness and advantages of the proposed results.  相似文献   

15.
This paper investigates the generalized matrix projective synchronization problem of general colored networks with different-dimensional node dynamics. A general colored network consists of colored nodes and edges, where the dimensions of colored node dynamics can be different in addition to the difference of the inner coupling matrices between any pair of nodes. For synchronizing a colored network onto a desired orbit with respect to the given matrices, open-plus-closed-loop controllers are designed. The closed-loop controllers are chosen as adaptive feedback and intermittent controllers, respectively. Based on the Lyapunov stability theory and mathematical induction, corresponding synchronization criteria are derived. Noticeably, many existing synchronization settings can be regarded as special cases of the present synchronization framework. Numerical simulations are provided to verify the theoretical results.  相似文献   

16.
In this paper, we are concerned with the lag synchronization problem of fuzzy cellular neural networks (FCNNs) with time-varying delays. Some sufficient conditions on the exponential lag synchronization of the FCNNs are obtained using a nonlinear measure method. The exponential decay rate of synchronization error is estimated. We also show how to determine the controller gain matrix under this method. Finally, simulation examples are given to illustrate the effectiveness of our obtained results.  相似文献   

17.
In this paper, the problem of the mean square exponential synchronization in Lagrange sense for the uncertain complex network is investigated. A complex network usually appears some uncertain phenomena, which includes varying topology structure, destroyed nodes, and the noise disturbance from circumstance. Based on the Lyapunov stability theory and the Kronecker product analysis technique, some conditions to guarantee the complex network mean square exponential synchronization in Lagrange sense are provided. Finally, two numerical examples are provided to illustrate the effectiveness of the method proposed.  相似文献   

18.
This paper investigates the passivity and synchronization problems for two classes of multiple weighted coupled neural networks (MWCNNs) with or without time delays. Firstly, by utilizing an impulsive control strategy and some inequality techniques, several passivity criteria for MWCNNs with diverse dimensions of output and input are established. Then, based on the Lyapunov functional, some sufficient conditions to ensure the synchronization of MWCNNs via impulsive control are derived. In addition, combined with the comparison principle and the impulsive delay differential inequality, the global exponential synchronization of MWCNNs with time-varying delays is considered under impulsive control. Finally, two numerical examples illustrate the effectiveness of the obtained results.  相似文献   

19.
In this article, a novel synchronization scheme is proposed to achieve hybrid modified function projective synchronization (HMFPS) in two different dimensional complex nonlinear systems with fully unknown parameters. In the complex space, the response system are asymptotically synchronized up to the different order’s drive system by the state transformation with a scaling function matrix, and all of unknown parameters in both drive and response systems are achieved to be identified. Based on the Lyapunov stability theory, an adaptive controller and updated laws of parameters are developed. Respectively on the ways of increased order and reduced order, the corresponding numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.  相似文献   

20.
This paper is concerned with the problem of exponential synchronization of coupled complex networks with time-varying delays and stochastic perturbations (CCNTDSP). Different from previous works, both the internal time-varying delay and the coupling time-varying delay are taken into account in the network model. Meanwhile, an impulsive controller is designed to realize exponential synchronization in mean square of CCNTDSP. Combining the Lyapunov method with Kirchhoff’s Matrix Tree Theorem, some sufficient criteria are obtained to guarantee exponential synchronization in mean square of CCNTDSP. Furthermore, we apply the theoretical results to study exponential synchronization of stochastic coupled oscillators with the internal time-varying delay and the coupling time-varying delay. And a synchronization criterion is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of our theoretical results and the superiority of impulsive control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号