首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前,在市场上出现了形形色色的号称纳米的产品,它是不是标志着高科技———纳米技术已经步入了我们的生活?纳米究竟是什么?它究竟有什么神奇的功能?市场吹嘘的纳米产品及其功能是真是假?本文就这些问题作一阐述和讨论。1纳米和纳米技术纳米(nm)实际上是一种长度的单位,lnm=10-9m,相当于45个原子串在一起的长度,人的一根头发丝的直径相当于6万个nm。纳米技术是在纳米尺寸范围内,通过直接操纵单个原子、分子来组装和制造具有特定功能的新物体的技术。通过这种技术所制成的物质称为纳米颗粒材料,其尺度一般为1~l00nm,仅为红细胞(200~300nm)和…  相似文献   

2.
<正>根据油田增产的需要,近年来运用有机—无机纳米复合材料成为了油田增产的一项重要的措施。本文选用耐温耐盐的2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和无机土填充物作为原料,N,N-亚甲基双丙烯酰胺为交联剂,过硫酸铵为引发剂,采用物理插层方法合成出耐温耐盐的纳米复合型材料。实验表明:在反应温度为60℃条件下,丙烯酰胺加量为7%,AMPS加量为3.5%时,所制备的凝胶颗粒效果最好。室内性能评价结果表  相似文献   

3.
纳米粒子的分散及其有机复合材料的复合技术   总被引:6,自引:0,他引:6  
有机纳米复合材料一般包括聚合物基有机纳米复合材料和聚合物基无机纳米复合材料,聚合物基无机纳米复合材料是集有机组分和无机纳米组分于一体的一种新型的功能高分子材料,是当今高分子材料科学最优先发展的方向之一[1].  相似文献   

4.
《中国科技信息》2002,(16):40-41
国际上塑料薄膜、特别是其在包装行业的应用,是朝着高性能和多功能化的方向发展.本项目采用独特的纳米无机粉体包覆技术,对各种功能性无机纳米粉体进行表面改性,改善纳米粒子与基体树脂的相容性,增强其与树脂的相容性,防止纳米粒子的团聚,使其均匀地分散于树脂中.目前,已开发出薄膜用复合抗菌母粒、复合防紫外母粒,复合抗静电母粒等纳米功能母粒.  相似文献   

5.
天然聚多糖具有生物降解性和生物相容性,可避免无机纳米粒子使用后造成的堆积并利于回收聚合物基质,还能避免无机纳米粒子对安全和健康的影响。天然聚多糖晶须和片晶基于纳米尺度的高比表面积及刚性棒状和片状结构,能发挥出如无机纳米粒子的材料增强功能。  相似文献   

6.
纳米技术孕育传感器革命   总被引:2,自引:0,他引:2  
一、纳米技术与纳米薄膜压力传感器纳米技术是一门在纳米空间(0.1~100nm)内研究电子、原子和分子的运动规律及特性,通过操作单个原子以制造具有特定功能材料或器件为最终目的的崭新技术。由于纳米材料的新特征现象和引发的新技术,不仅涉及到当前科学技术的前沿研究,而且其应用也渗透到国民经济的各个部门,纳米技术由此被誉为“引导下次工业革命”的高新技术。目前,应用纳米技术研究开发纳米传感器,有两种情况:一是采用纳米结构的材料(包括粉粒状纳米材料和薄膜状的纳米材料)制作传感器;二是研究操作单个或多个纳米原子有序排列成所需结构而…  相似文献   

7.
纳米颗粒材料制备科学与工程基础研究进展   总被引:2,自引:0,他引:2  
纳米结构材料一般由纳米颗粒、纳米晶及纳米薄膜等结构组装而成, 其特异性能也取决于这些基本构成单元,因此纳米颗粒的制备在纳米技术领域占有重要地位 。基于“纳米颗粒材料制备科学与工程基础研究”国家自然科学基金重点项目所取得的重要 进展及成果,本文论述了不同结构及组成的纳米颗粒的制备方法及形态控制策略,提出了纳 米颗粒化学制备过程的工程特征及放大策略,分析了纳米颗粒材料表面处理技术及相关理论 问题,对有待开展研究的领域和方向提出了建议。  相似文献   

8.
纳米塑料     
《中国科技信息》2003,(22):60-60
“纳米塑料”是指无机填充物以纳米尺寸分散在有机聚合物基体中形成的有机/无机纳米复合材料。在纳米复合材料中,分散相的尺寸至少在一维方向小于100nm。由于分散性的纳米尺寸效应、大比表面积和强界面结合,纳米复合材料具有一般  相似文献   

9.
基于磁性纳米颗粒(MNPs)独特的物理和化学性质,把它作为吸附材料为解决环境问题的研究越来越受到广泛关注。通过其表面官能团修饰制备出不同类型的磁性纳米吸附剂,可以除去废水中大量的有机和无机污染物,吸附性能远远超出了传统吸附材料。然而,磁性纳米基吸附技术的成功实施需要对磁性回收阶段,再生过程和废弃再生溶液及废弃吸附剂的的管理进行全面的评估和优化。对近年来国内外使用磁性纳米吸附剂去除废水中的重金属和染料整个过程做了全面的论述。此外,也分析了磁性回收方法的选择和可能的策略以便用于纳米材料的再生和重复使用。  相似文献   

10.
明胶水溶液中银离子的光还原   总被引:3,自引:0,他引:3  
利用紫外线辐射AgNO3明胶(CH3)2CHOH 水溶液制备了银纳米颗粒,并用吸收光谱和透射电镜跟踪研究了其形成过程.发现增大明胶和银离子浓度可以加速银颗粒的生成,其粒径随明胶浓度增大而减小,银颗粒的光还原过程属于准一级反应;明胶保护下的银纳米颗粒具有很高的稳定性.提出了AgNO3明胶(CH3)2CHOH水溶液中Ag + 的光还原及明胶对银颗粒的稳定机理  相似文献   

11.
名词解释     
原子各种元素,如制造锅子的铝或空气中的氧,都是由一些很小的颗粒组成的,就像房子是用砖砌起来的一样,不同的元素具有不同的颗粒。当物质发生化学变化的时候,这些颗粒是参加变化的最小单位。这种颗粒叫做原子。原子是很小的,一亿个原子一个挨一个地排起来才有一厘米长。原子有一个核心叫原子核,几乎佔全部原子的质量,带有正电。原子里还有一些更小的颗粒,叫做电子,带有负电,它被原子核吸  相似文献   

12.
包覆型纳米铁颗粒的制备新进展   总被引:5,自引:0,他引:5  
罗驹华  张振忠  张少明 《科技通报》2006,22(4):557-561,566
包覆型纳米铁颗粒的制备对于基础磁性研究和实际工程应用来说都是非常有意义的。对于基础研究.包覆层阻止了颗粒聚集长大和表面氧化;对于临床应用,包覆层阻止了酸性环境对颗粒的侵蚀;对于软磁应用,包覆层不仅作为绝缘相增大了电阻,而且作为粘结剂使纳米颗粒易于加压成型。在过去的几十年里。国内外许多学者开展了对包覆型纳米铁颗粒的制备、结构和磁性能的研究。本文着重阐述了包覆型纳米铁颗粒的制备方法,并指出了这一领域今后研究的方向。  相似文献   

13.
<正>当颗粒直径达到纳米水平的时候,它们会具有一些传统材料所不具备的奇异或反常的物理、化学特性,比如:原本导电的铜到某一纳米级界限时就不导电了;原来绝缘的二氧化硅等,在某一纳米级界限时却开始导电。近日,美国麻省理工学院的研究人员又发现了纳米银粒子的一种新现象:这些银颗粒形似水滴,可任意变换形状,但其内部却可以始终保持着完美稳定的晶体形态。  相似文献   

14.
新型炸药     
<正>随着炸药技术的发展,其破坏力也越来越大。超细炸药超细炸药,就是尽可能将炸药颗粒变细,理论上,如果能将一个微米或亚微米级的炸药颗粒,分裂成众多尺寸约数十纳米的微粒,那么,其总体表面积  相似文献   

15.
纳米技术发展迅速,而金属在纳米级别展现出了特殊的光学特性。本文通过基于有限元法的Comsol Multiphysics软件研究了基于局域表面等离子体共振的球状金纳米颗粒的消光光谱,分析了其波峰随纳米颗粒尺寸及外部介质折射率的变化情况。  相似文献   

16.
《中国科学院院刊》2011,(3):344-344
中科院苏州纳米技术与纳米仿生所王强斌课题组与武汉病毒所纳米生物学实验室合作,通过基因工程手段对天然病毒纳米颗粒结构进行改造,实现了病毒纳米颗粒表面特异性功能化,并以此结构为支架,高效构建了病毒纳米颗粒内部包裹一个量子点、表面含有特定数目(1—12)的金纳米颗粒的三维离散纳米结构。  相似文献   

17.
中国科学院北京真空物理实验室庞世瑾教授及其领导的研究小组开展的用超高真空扫描隧道显微镜(STM)进行原子操纵的研究项目,在1994年取得了突破性的进展,使我国的原子操纵研究处于国际前沿。原子操纵是纳米科技的重要研究领域之一,它的主要应用背景是纳米电子学。要研制纳米量子器件,必须具备形成任意原子级和纳米级图案的能力。  相似文献   

18.
前沿     
<正>纳米救命药丸约翰——霍普金斯大学的科学家制造了一种新型纳米颗粒,能够非常轻易地穿透身体的黏性黏液组织,为缓释药物提供良好的载体。研究人员称,这种纳米颗粒在体内一段时间内就降解成无害的成分。该结果发表于美国的《国家科学院院刊》(PNAS)。  相似文献   

19.
<正>项目概况本项目通过研究纳米颗粒(在电场下)的聚集及自组装、以及纳米颗粒同液体间(电)浸润的影响和变化规律,研究颗粒的介电极性、纳米粒径以及对油相的浸润引起强电流变效应的作用规律,开发电流变液用的具有新组分和性质的纳米高介电球型颗粒的制备技术和附着极性分子的技术,研制出动态剪切强度高、抗沉降性好的电流变液制备技术。研制出的电流变液可提高离合器、阻尼系统、减震器、制动等系统的可操控性和可靠性。  相似文献   

20.
纳米科技是当今研究的热点领域,其中的一个核心问题是在超高时间/空间分辨尺度下研究纳米材料的原子及载流子动力学特性与物性之间的关系.当材料进入到纳米尺度后,其原子和载流子等动力学特性都强烈依赖于它的结构和尺度,二者决定了其物性和相关的器件行为.目前研究传统宏观材料性质与动力学特性的技术存在很大的局限性,因为这些技术或缺少...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号