首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
例若a是非零常数,对于任意的x∈R,函数f(x)满足f(x a)=1/2 √f(x)-(f(x))2,求证:f(x)是周期函数. 证明由f(x a)≥1/2在x∈R时恒成立,得f(x)≥1/2在x∈R时恒成立.  相似文献   

2.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数;如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数.其判定的法则是:(1)看关系式是否出现f(-x)=-f(x)(此为奇函数)或f(-x)=f(x)(此为偶函数);(2)看定义域是否关于原点对称;(3)看图像是否关于原点对称(此为奇函数)或关于y轴对称(此为偶函数).显然,法  相似文献   

3.
Ⅰ.正比例函数f(x)=kx(k≠0,x∈R)的抽象函数的特征式为:(1)f(x+y)=f(x)+f(y);(2)f(x-y)=f(x)-f(y);(3)f(xy)=k1f(x)f(y),特别地当k=1时,有f(xy)=f(x)f(y).例1:定义在R上的函数f(x),恒有f(x+y)=f(x)+f(y),若f(16)=4,那么f(2003)=.解法1(基本解法):令x=y=0,得f(0)=2f(0),∴f(0)=0.令y=-x,得f(x-x)=f(x)+f(-x),即f(-x)=-f(x),∴f(x)是奇函数.令y=x,得f(2x)=2f(x),f(22x)=f(2·2x)=2f(2x)=22f(x),…,f(2nx)=2nf(x).又∵f(16)=4,∴f(1)=41.∵f(2003)=f(211-25-23-22-1),∴f(2003)=f(211)-f(25)-f(23)-f(22)-f(1)=(211-25-23-22-1)·f(1)=20403.…  相似文献   

4.
2011年大学保送生考试已结束.本文例举清华大学、北京大学保送生考试的两个题目并给出解答,以飨读者.题1已知f(x)是定义在[0,1]上的非负函数,且f(1)=1,对任意的x、y、x+y,∈[0,1]都有f(x+y)≥f(x)+f(y).证明:f(x)≤2x(x∈[0,1]).(2011,清华大学保送生考试)证明对任意x、△x、x+△x∈[0,1],有f(x+△x)-f(x)≥f(△x)≥0.所以,f(x)是不减函数.对任意的x∈[0,1],必存在n∈N_+,使得x∈[1/2~n,1/2~(n-1)).  相似文献   

5.
抽象函数,其性质常常是隐而不露.但就其类型,最基本的有以下几种:(1)线性函数型抽象函数,如f(x+y)=f(x)+f(y);(2)指数函数型抽象函数,如f(x+y)=f(x)f(y);(3)对数函数抽象函数型,如f(xy)=f(x)+f(y)(4)三角函数型抽象函数,如f(x+y)f(x-y)=2f(x)f(y)(余弦函数型),f(x±y)=f(x)g(y)±f(y)g(x)(正弦函数型),f(x±y)=f(x)±f(y)/1-+f(x)f(y)(正切函数型).只要善于借用相应函数的相关性质,就  相似文献   

6.
通常意义上的“抽象函数”是指没有给出解析式或尽管给出解析式但式中含有未知参数的函数。这类函数问题一般能较深刻地体现函数的概念与性质等特征,又能与不等式、方程等紧密联系,因而能较好地培养和考查学生运用多种数学思想方法分析和解决问题的能力,但因其比较抽象,学生往往难以入手。本文就此类问题的归类及解题策略谈点看法。一、f(x±y)=f(x)±f(y)+c(c为常数)型例1.已知函数f(x)的定义域为R,且同时满足:(1)对任意x、y∈R,有f(x+y)=f(x)+f(y);(2)当x>0时,f(x)<0,且f(1)=-2,求f(x)在区间[-3,3]上的最大值与最小值。分析:二次函数,指…  相似文献   

7.
在[※]中讨论了双曲正弦与双曲余弦的特征方程本文将用更简捷的方法给出基本初等函数与双曲函数的特征方程及其证明。 1.若实函数f(x)在x=0点可导且对任意x,y∈R满足 f(x y)=f (x) f(y)则f(x)为线性函数。 证明:在(※)式中令y=0得 f(x)=f(x) f(0)(?)f(0)=0  相似文献   

8.
函数奇偶性的定义为:设y=f(x)(x∈A),如果对于任意x∈A,都有f(-x)=f(x),则称函数y=f(x)为偶函数;如果对于任意x∈A,都有f(-x)=-f(x),则称函数y=f(x)为奇函数.  相似文献   

9.
正1问题的提出在一节数学习题课上,笔者出示了这样一道题:设函数f(x)的定义域为R,当x0时,0f(x)1,而且对于任意的实数x,y都满足f(x+y)=f(x)f(y),求f(0)的值.让学生思考片刻后,笔者在黑板上给出了如下的解法:解令x=0,y0,代入f(x+y)=f(x)f(y),得f(0+y)=f(0)f(y).  相似文献   

10.
深入分析函数奇偶性的定义特点,可以得到以下多个方面的理解.分述如下: 1.从定义理解 设y=f(x),x∈A,如果对于任意x∈A,都有f(-x)=f(x),则称函数y=f(x)为偶函数;如果对于任意x∈A,都有f(-x)=-f(x),则称函数y=f(x)为奇函数.  相似文献   

11.
函数的奇偶性与周期性有如下一种关系:定理1设函数y=f(x)(x∈R)是偶函数,且f(a-x)=f(a x)(a≠0),则函数y=f(x)必是周期函数,且2a是它的一个周期.证明:由f(x)是偶函数知,对任意x∈R,有f(-x)=f(x).又因为  相似文献   

12.
1.设单射函数f:R→R对于任何的x,y∈R,都有f(f(x) f(y))=f(x y)-2. 求证:对于任何x∈R,都有f(f(x)-2003)=f(x)-2004.  相似文献   

13.
一、赋值策略 例1 已知函数的定义域为R.对任意x、y满足f(x y)=f(x) f(y).当x>0时,f(x)>0.(1)判断f(x)的奇偶性;(2)判断f(x)的单调性.  相似文献   

14.
本文通过几道函数方程题的剖析,掌握常见题型的处理方法,进一步加深对函数性质的理解。 1.线性函数型例1 已知函数f(x)对任意x、y∈R均有f(x+y)=f(x)+f(y);又当x<0时,  相似文献   

15.
定理定义在R上的函数y=f(x)的图象关于直线x=a的对称的充要条件是f(x)=f(2a-x)(a∈R)证明:(1)充分性由f(x)=f(2a-x)可知若点A(x,y)是y=f(x)的图象上的任意一点,则点A′(2a-x,y)也在其图象上∵点A与A′关于直线x=a对称∴函数y=f(x)的图象关于直线x=a对称(2)必要性设A(x,y)是y=f(  相似文献   

16.
在各类考试中,经常遇到与函数方程有关的问题,或直接求解某一给定的函数方程,或根据所给的函数方程确定某些函数值或确定函数具有某种性质,这类问题通常没有通法,解法因题而异,思路灵活而奇趣横生.本文以三个常见的初等代数函数方程为例,探讨其解法.在初等代数函数中,如下三种函数:(1)正比例函数:f(x)=kx(k≠0);(2)指数函数:f(x)=ax(a>0且a≠1);(3)对数函数:f(x)=logax(a>0且a≠1)在各自的定义域上都是单调函数,且它们分别满足性质:(1)f(x+y)=f(x)+f(y);(2)f(x+y)=f(x)·f(y);(3)f(xy)=f(x)+f(y).现在我们探讨逆问题是否成立,即分别满足这三…  相似文献   

17.
高中数学竞赛中有些命题可转化为周期问题,关键是如何发现和巧妙地运用周期性.现分类归纳如下,供同学们参考. 例1 已知f(x)是定义在R上的函数,f(1)=1且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求  相似文献   

18.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

19.
<正>现行人教版教材高中《数学》必修1中有道这样的试题:已知f (x)=3x,求证:(1)f(x)·f(y)=f(x+y);(2)f(x)÷f(y)=f(x-y)。这道试题是让验证f(x)是指定函数方程的解。那么,什么是函数方程?如何解函数方程呢?所谓函数方程就是含有未知函数的等式,使函数方程成立的函数叫函数方  相似文献   

20.
本人就几类抽象函数的问题进行具体的求解说明: 一、利用赋值特殊值来求解【例1】已知函数f(x)定义在R上,且对任意x,y∈R,满足f(x+y)=f(x)+f(y),则f(x)一定是( ) A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号