首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Argumentation is fundamental to science education, both as a prominent feature of scientific reasoning and as an effective mode of learning—a perspective reflected in contemporary frameworks and standards. The successful implementation of argumentation in school science, however, requires a paradigm shift in science assessment from the measurement of knowledge and understanding to the measurement of performance and knowledge in use. Performance tasks requiring argumentation must capture the many ways students can construct and evaluate arguments in science, yet such tasks are both expensive and resource-intensive to score. In this study we explore how machine learning text classification techniques can be applied to develop efficient, valid, and accurate constructed-response measures of students' competency with written scientific argumentation that are aligned with a validated argumentation learning progression. Data come from 933 middle school students in the San Francisco Bay Area and are based on three sets of argumentation items in three different science contexts. The findings demonstrate that we have been able to develop computer scoring models that can achieve substantial to almost perfect agreement between human-assigned and computer-predicted scores. Model performance was slightly weaker for harder items targeting higher levels of the learning progression, largely due to the linguistic complexity of these responses and the sparsity of higher-level responses in the training data set. Comparing the efficacy of different scoring approaches revealed that breaking down students' arguments into multiple components (e.g., the presence of an accurate claim or providing sufficient evidence), developing computer models for each component, and combining scores from these analytic components into a holistic score produced better results than holistic scoring approaches. However, this analytical approach was found to be differentially biased when scoring responses from English learners (EL) students as compared to responses from non-EL students on some items. Differences in the severity between human and computer scores for EL between these approaches are explored, and potential sources of bias in automated scoring are discussed.  相似文献   

2.
3.
Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade students' views of explanation, argument, and evidence across three contexts—what scientists do, what happens in science classrooms, and what happens in everyday life. The study also focused on how students' abilities to engage in one practice, argumentation, changed over the school year. Multiple data sources were analyzed: pre‐ and post‐student interviews, videotapes of classroom instruction, and student writing. The results from the beginning of the school year suggest that students' views of explanation, argument, and evidence, varied across the three contexts with students most likely to respond “I don't know” when talking about their science classroom. Students had resources to draw from both in their everyday knowledge and knowledge of scientists, but were unclear how to use those resources in their science classroom. Students' understandings of explanation, argument, and evidence for scientists and for science class changed over the course of the school year, while their everyday meanings remained more constant. This suggests that instruction can support students in developing stronger understanding of these scientific practices, while still maintaining distinct understandings for their everyday lives. Finally, the students wrote stronger scientific arguments by the end of the school year in terms of the structure of an argument, though the accuracy, appropriateness, and sufficiency of the arguments varied depending on the specific learning or assessment task. This indicates that elementary students are able to write scientific arguments, yet they need support to apply this practice to new and more complex contexts and content areas. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 793–823, 2011  相似文献   

4.
Current research indicates that student engagement in scientific argumentation can foster a better understanding of the concepts and the processes of science. Yet opportunities for students to participate in authentic argumentation inside the science classroom are rare. There also is little known about science teachers' understandings of argumentation, their ability to participate in this complex practice, or their views about using argumentation as part of the teaching and learning of science. In this study, the researchers used a cognitive appraisal interview to examine how 30 secondary science teachers evaluate alternative explanations, generate an argument to support a specific explanation, and investigate their views about engaging students in argumentation. The analysis of the teachers' comments and actions during the interview indicates that these teachers relied primarily on their prior content knowledge to evaluate the validity of an explanation rather than using available data. Although some of the teachers included data and reasoning in their arguments, most of the teachers crafted an argument that simply expanded on a chosen explanation but provided no real support for it. The teachers also mentioned multiple barriers to the integration of argumentation into the teaching and learning of science, primarily related to their perceptions of students' ability levels, even though all of these teachers viewed argumentation as a way to help students understand science. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 1122–1148, 2012  相似文献   

5.
The literature provides confounding information with regard to questions about whether students in high school can engage in meaningful argumentation about socio‐scientific issues and whether this process improves their conceptual understanding of science. The purpose of this research was to explore the impact of classroom‐based argumentation on high school students' argumentation skills, informal reasoning, and conceptual understanding of genetics. The research was conducted as a case study in one school with an embedded quasi‐experimental design with two Grade 10 classes (n = 46) forming the argumentation group and two Grade 10 classes (n = 46) forming the comparison group. The teacher of the argumentation group participated in professional learning and explicitly taught argumentation skills to the students in his classes during one, 50‐minute lesson and involved them in whole‐class argumentation about socio‐scientific issues in a further two lessons. Data were generated through a detailed, written pre‐ and post‐instruction student survey. The findings showed that the argumentation group, but not the comparison group, improved significantly in the complexity and quality of their arguments and gave more explanations showing rational informal reasoning. Both groups improved significantly in their genetics understanding, but the improvement of the argumentation group was significantly better than the comparison group. The importance of the findings are that after only a short intervention of three lessons, improvements in the structure and complexity of students' arguments, the degree of rational informal reasoning, and students' conceptual understanding of science can occur. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 952–977, 2010  相似文献   

6.
7.
The ability to build arguments is a crucial skill and a central educational goal in all school subjects including science as it enables students to formulate reasoned opinions and thus to cope with the increasing complexity of knowledge. In the present cross-sectional study, we examined the domain-specificity of argumentative writing in science by comparing it with a rather general type of argumentation as promoted in first-language education and with formal reasoning to gain insight into different forms of argumentation on theoretical and empirical levels. Using a paper-and-pencil test, we analyzed written argumentations and the reasoning abilities of 3,274 Grade-10 students in German secondary schools. Correlation and multiple regression analyses as well as a qualitative analysis of students' answers to a subset of tasks in the domains of science and first-language education were conducted. Results showed moderate relations between argumentation in science, argumentation in first-language education, and reasoning. Half of the variance in argumentation in science was explained by individual differences in argumentation in first-language education and reasoning. Furthermore, the examination of written arguments revealed differences, for example, in students' weighing of pros and cons. We assume that the familiarity of the underlying scientific information may play an essential role in the argumentation process and posit that it needs to be investigated in more detail. Overall, the study indicates that investigating the argumentational abilities of learners in first-language education and reasoning abilities can help to shed light on the domain-specificity of argumentation in science.  相似文献   

8.
This paper argues the possible simultaneous development and transfer of students' argumentation skills from one socio-scientific issue to another in a Confucian classroom. In Malaysia, the Chinese vernacular schools follow a strict Confucian philosophy in the teaching and learning process. The teacher talks and the students listen. This case study explored the transfer of argumentation skills across two socio-scientific issues in such a Form 2 (8th grade) classroom. An instructional support to complement the syllabus was utilised. The teaching approach in the instructional support was more constructivist in nature and designed to introduce argumentation skills which is uncommon in a Confucian classroom. The two socio-scientific issues were genetically modified foods and deforestation. This paper presents a part of the bigger case study that was conducted. Data collected from written arguments were analysed using an analytical framework built upon Toulmin's ideas. The whole class analysis indicated progression in students' argumentation skills in their ability to give more valid grounds and rebuttals during the transfer. The individual analysis suggests progression in the majority of students' performance, while several students demonstrated non-progression when they faced a different socio-scientific issue.  相似文献   

9.
In this study we investigated junior high school students' processes of argumentation and cognitive development in science and socioscientific lessons. Detailed studies of the relationship between argumentation and the development of scientific knowledge are rare. Using video and audio documents of small group and classroom discussions, the quality and frequency of students' argumentation was analyzed using a schema based on the work of Toulmin ( 1958 ). In parallel, students' development and use of scientific knowledge was also investigated, drawing on a schema for determining the content and level of abstraction of students' meaning‐making. These two complementary analyses enabled an exploration of their impact on each other. The microanalysis of student discourse showed that: (a) when engaging in argumentation students draw on their prior experiences and knowledge; (b) such activity enables students to consolidate their existing knowledge and elaborate their science understanding at relatively high levels of abstraction. The results also suggest that students can acquire a higher quality of argumentation that consists of well‐grounded knowledge with a relatively low level of abstraction. The findings further suggest that the main indicator of whether or not a high quality of argument is likely to be attained is students' familiarity and understanding of the content of the task. The major implication of this work for developing argumentation in the classroom is the need to consider the nature and extent of students' content‐specific experiences and knowledge prior to asking them to engage in argumentation. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 101–131, 2008  相似文献   

10.
The national science standards, along with prominent researchers, call for increased focus on scientific argumentation in the classroom. Over the past decade, researchers have developed sophisticated online science learning environments to support these opportunities for scientific argumentation. Assessing the quality of dialogic argumentation, however, has proven challenging. Existing analytic frameworks assess dialogic argumentation in terms of the nature of students' discourse, formal argumentation structure, interactions, and epistemic forms of reasoning. Few frameworks, however, connect these assessments to conceptual quality. We present an analytic framework for assessing argumentation in online science learning environments that relates levels of opposition with discourse moves, use of grounds, and conceptual quality. We then apply the proposed framework to students' dialogic argumentation within a representative online science learning environment to investigate the framework's potential affordances as well as to assess issues of reliability and appropriateness. The results suggest that the framework offers significant affordances and that it also offers high interrater reliability for trained coders. The applicability of the framework for offline contexts and future extensions of the framework are discussed in light of these results. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 293–321, 2008  相似文献   

11.
This paper explicates a pattern of scientific argumentation in which scientists respond to causal questions with the generation and test of alternative hypotheses through cycles of hypothetico‐predictive argumentation. Hypothetico‐predictive arguments are employed to test causal claims that exist on at least two levels (designated stage 4 in which the causal claims are perceptible, and stage 5 in which the causal claims are imperceptible). Origins of the ability to construct and comprehend hypothetico‐predictive arguments at the highest level can be traced to pre‐verbal reasoning of the sensory‐motor child and the gradual internalization of verbally mediated arguments involving nominal, categorical, causal and, finally, theoretical propositions. Presumably, the ability to construct and comprehend hypothetico‐predictive arguments (an aspect of procedural knowledge) is necessary for the construction of conceptual knowledge (an aspect of declarative knowledge) because such arguments are used during concept construction and conceptual change. Science instruction that focuses on the generation and debate of hypothetico‐predictive arguments should improve students' conceptual understanding and their argumentative/reasoning skills.  相似文献   

12.
This study examined the outcomes of a unit that integrates explicit teaching of general reasoning patterns into the teaching of a specific science content. Specifically, this article examined the teaching of argumentation skills in the context of dilemmas in human genetics. Before instruction only a minority (16.2%) of the students referred to correct, specific biological knowledge in constructing arguments in the context of dilemmas in genetics. Approximately 90% of the students were successful in formulating simple arguments. An assessment that took place following instruction supported the conclusion that integrating explicit teaching of argumentation into the teaching of dilemmas in human genetics enhances performance in both biological knowledge and argumentation. An increase was found in the frequency of students who referred to correct, specific biological knowledge in constructing arguments. Students in the experimental group scored significantly higher than students in the comparison group in a test of genetics knowledge. An increase was also found in the quality of students' argumentation. Students were able to transfer the reasoning abilities taught in the context of genetics to the context of dilemmas taken from everyday life. The effects of metacognitive thinking and of changing students' thinking dispositions by modifying what is considered valuable in the class culture are discussed. © 2002 John Wiley & Sons, Inc. J Res Sci Teach 39: 35–62, 2002  相似文献   

13.
Over the past two decades, scientific editors have attempted to correct “mistaken” assumptions about scientific images and to curb unethical image-manipulation practices. Reactions to the advent and abuse of image-adjustment software (such as Adobe Photoshop) reveal the complex relations among visual representations, scientific credibility, and epistemic rhetoric. Perelman and Olbrechts-Tyteca's model of argumentation provides a flexible system for understanding these relations and for teaching students to use scientific images ethically and effectively.  相似文献   

14.
We investigated how 2 different curricular scaffolds (context-specific vs. generic), teacher instructional practices, and the interaction between these 2 types of support influenced students' learning of science content and their ability to write scientific arguments to explain phenomena. The context-specific scaffolds provided students with hints about the task and what content knowledge to use in or incorporate into their writing. The generic scaffolds supported students in understanding a general framework (i.e., claim, evidence, and reasoning) regardless of the content area or task. This study focused on an 8-week middle school chemistry curriculum that was enacted by 6 teachers with 578 students during the 2004–2005 school year. Analyses of identical pre- and posttests as well as videotapes of teacher enactments revealed that the curricular scaffolds and teacher instructional practices were synergistic in that the effect of the written curricular scaffolds depended on the teacher's enactment of the curriculum. The context-specific curricular scaffolds were more successful in supporting students in writing scientific arguments to explain phenomena, but only when teachers' enactments provided explicit domain-general support for the claim, evidence, and reasoning framework, suggesting the importance of both types of support in successful learning environments.  相似文献   

15.
Scientific argumentation is one of the core practices for teachers to implement in science classrooms. We developed a computer-based formative assessment to support students’ construction and revision of scientific arguments. The assessment is built upon automated scoring of students’ arguments and provides feedback to students and teachers. Preliminary validity evidence was collected in this study to support the use of automated scoring in this formative assessment. The results showed satisfactory psychometric properties related to this formative assessment. The automated scores showed satisfactory agreement with human scores, but small discrepancies still existed. Automated scores and feedback encouraged students to revise their answers. Students’ scientific argumentation skills improved during the revision process. These findings provided preliminary evident to support the use of automated scoring in the formative assessment to diagnose and enhance students’ argumentation skills in the context of climate change in secondary school science classrooms.  相似文献   

16.
Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during instruction differently for topics that rely on experimental or historical modes of inquiry. Four experienced high-school science teachers were observed daily during instructional units for both experimental and historical science topics. The main data sources include classroom observations and teacher interviews. The arguments were analyzed using Toulmin's argumentation pattern revealing specific patterns of arguments in teaching topics relying on these 2 modes of scientific inquiry. The teachers presented arguments to their students that were rather simple in structure but relatively authentic to the 2 different modes. The teachers used far more evidence in teaching topics based on historical inquiry than topics based on experimental inquiry. However, the differences were implicit in their teaching. Furthermore, their arguments did not portray the dynamic nature of science. Very few rebuttals or qualifiers were provided as the teachers were presenting their claims as if the data led straightforward to the claim. Implications for classroom practice and research are discussed.  相似文献   

17.
The task of writing arguments requires a linguistic and cognitive sophistication that eludes many adults, but students in the US are expected to produce texts that articulate and support a claim—simple written arguments—starting in the fourth grade. Students from language-minority homes likewise must learn to produce such writing, despite their relatively limited experience with the English language, reflected in the availability of smaller mental lexicons and more restricted syntactic constructions. Yet some features of bilingual children’s cognition, such as precocious development of theory of mind and strong metalinguistic awareness, might support the crafting of arguments in writing, where the explicit consideration of multiple points of view can serve to strengthen one’s case for a claim. In this study we examine the incidence of social perspective-taking acts in the argumentative essays of language-minority and English-only students in Grades 4–6 and find that language-minority students match or surpass the English-only students on two critical measures of perspective taking (perspective acknowledgment and perspective articulation). We also explore possible links between students’ use of perspective taking in their argumentative essays and a validated formal measure of the same skill, uncovering different relationships between them in the two language groups. Links to previously attested bilingual advantages and to the development of argumentation are discussed.  相似文献   

18.
We investigated how students articulate uncertainty when they are engaged in structured scientific argumentation tasks where they generate, examine, and interpret data to determine the existence of exoplanets. In this study, 302 high school students completed 4 structured scientific arguments that followed a series of computer-model-based curriculum module activities simulating the radial velocity and/or the transit method. Structured scientific argumentation tasks involved claim, explanation, uncertainty rating, and uncertainty rationale. We explored (1) how students are articulating uncertainty within the various elements of the task and (2) the relationship between the way the task is presented and the way students are articulating uncertainty. We found that (1) while the majority of students did not express uncertainty in either explanation or uncertainty rationale, students who did express uncertainty in their explanations did so scientifically without being prompted explicitly, (2) students’ uncertainty ratings and rationales revealed a mix of their personal confidence and uncertainty related to science, and (3) if a task presented noisy data, students were less likely to express uncertainty in their explanations.  相似文献   

19.
We explored the scientific argumentation that occurs among university biology students during an argumentation task implemented in two environments: face-to-face in a classroom and online in an asynchronous discussion. We observed 10 student groups, each composed of three students. Our analysis focused on how students respond to their peers’ unscientific arguments, which we define as assertions, hypotheses, propositions, or explanations that are inaccurate or incomplete from a scientific perspective. Unscientific arguments provide opportunities for productive dissent, scientific argumentation, and conceptual development of scientifically desirable conceptions. We found that students did not respond to the majority of unscientific arguments in both environments. Challenges to unscientific arguments were expressed as a question or through explanation, although the latter was more common online than face-to-face. Students demonstrated significantly more epistemic distancing in the face-to-face environment than the online environment. We discuss the differences in discourse observed in both environments and teaching implications. We also provide direction for future research seeking to address the challenges of engaging students in productive scientific argumentation in both face-to-face and online environments.  相似文献   

20.
Questions concerning 13–16 year old students' developing understanding of different biological concepts related to the theory of evolution of species are focused. The aim is to get more detailed examples of the ways in which students understand complex biological concepts and the development of these concepts. Data were collected from two different periods: at the beginning of the seventh and at the end of the ninth grade of the Swedish compulsory school. The examples given show how students, in various ways, construct and develop their understanding of animal and plant adaptation to nature, with the help of their biological knowledge as well as by alternative and more intuitive ideas about the function of nature. The varying abilities of students to express their ideas are discussed as well as different arguments concerning the student's difficulties in adapting to scientific ideas from more intuitive ideas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号