首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pigeons trained to choose different stimuli following short- and long-duration signals make disproportionately more “short” choices (i.e., “choose-short errors”) following an increase in the retention interval and more “choose-long errors” following a decrease in this delay. The present experiment provided a systematic investigation of how these selective errors depend on the relationship between the training delay and the test delay. Pigeons were first trained with a 0-sec delay between the signal (2- or 8-sec food presentations) and the choice stimuli (red- and blue-lit keys). On subsequent test trials with 5- and 10-sec delays, choose-short errors predominated. Next, the birds were trained with a constant 10-sec delay and then tested with shorter or longer delays on some trials. The birds now responded accurately and without selective errors at the 10-sec training delay, but made choose-long errors at shorter delays and choose-short errors at longer delays. Finally, the birds were trained with a constant 20-sec delay and then tested with shorter and longer delays. Choose-long errors again appeared at shorter test delays, choose-short errors at longer test delays, and no differential errors at the 20-sec training delay. The selectivity of these errors generally increased with the absolute difference between the training and test delay. Theoretical implications of these results are discussed.  相似文献   

2.
An attempt was madeto manipulate the strength of internal stimulus representations by exposing pigeons to brief delays between sample offset and comparison onset in a delayed conditional discrimination. In Experiment 1, pigeons were first trained on delayed conditional discrimination with either short (0.5-sec) delays or no delays. When delays were increased by 2.0 sec, birds trained with a delay performed at a higher level than did birds trained with no delays. In Experiment 2, subjects were first trained on a delayed simple discrimination. Following a circle stimulus, responses to a white key were reinforced; however, following a dot stimulus, responses to the white key were not reinforced. The pigeons were then trained on a delayed conditional discrimination involving hue samples and line-orientation comparisons with differential outcomes. Choice of vertical following red yielded food; choice of horizontal following green yielded no food. Mixed delays were then introduced to birds in Group Delay, whereas birds in the control group received overtraining. When tested on a delayed simple discrimination with hue stimuli (red and green initial stimuli followed by white response stimulus), pigeons in Group Delay tended to perform at a higher level than did birds in the control group (i.e., although the birds in both groups responded more following red than following green, birds in Group Delay did this to a greater extent than did birds in the control group). Thus, experience with delays appears to strengthen stimulus representations established during training.  相似文献   

3.
How do animals choose between opportunities to run of different durations? Are longer durations preferred over shorter durations because they permit a greater number of revolutions? Are shorter durations preferred because they engender higher rates of running? Will longer durations be chosen because running is less constrained? The present study reports on three experiments that attempted to address these questions. In the first experiment, five male Wistar rats chose between 10-sec and 50-sec opportunities to run on modified concurrent variable-interval (VI) schedules. Across conditions, the durations associated with the alternatives were reversed. Response, time, and reinforcer proportions did not vary from indifference. In a second experiment, eight female Long-Evans rats chose between opportunities to run of equal (30 sec) and unequal durations (10 sec and 50 sec) on concurrent variable-ratio (VR) schedules. As in Experiment 1, between presentations of equal duration conditions, 10-sec and 50-sec durations were reversed. Results showed that response, time, and reinforcer proportions on an alternative did not vary with reinforcer duration. In a third experiment, using concurrent VR schedules, durations were systematically varied to decrease the shorter duration toward 0 sec. As the shorter duration decreased, response, time, and reinforcer proportions shifted toward the longer duration. In summary, differences in durations of opportunities to run did not affect choice behavior in a manner consistent with the assumption that a longer reinforcer is a larger reinforcer.  相似文献   

4.
Pigeons’ choice responding on 10-sec interpolated probes was studied after baseline training on multiple variable-interval variable-interval schedules of food reinforcement. Unreinforced choice following training with three different relative reinforcement rates (Experiment 1), with a 3-ply multiple schedule (Experiment 2), and with three different relative reinforcement durations (Experiment 3) was examined. Least squares lines were fit to choice relative response rate and schedule relative response rate as functions of training relative reinforcement rate; choice slope was significantly greater than schedule slope in all three experiments. This result is counter to the prediction of Herrnstein’s (1970) theory that these slopes should not differ. Luce’s (1959) theory also failed to account for the data. It was concluded that choice responding was controlled by both approach to the stimulus associated with the smaller mean interreinforcer interval or the longer duration, and avoidance of the other stimulus.  相似文献   

5.
Two theories of timing, scalar expectancy theory (SET) and learning-to-time (LeT), make substantially different assumptions about what animals learn in temporal tasks. In a test of these assumptions, pigeons learned two temporal discriminations. On Type 1 trials, they learned to choose a red key after a 1-sec signal and a green key after a 4-sec signal; on Type 2 trials, they learned to choose a blue key after a 4-sec signal and a yellow key after either an 8-sec signal (Group 8) or a 16-sec signal (Group 16). Then, the birds were exposed to signals 1 sec, 4 sec, and 16 sec in length and given a choice between novel key combinations (red or green vs. blue or yellow). The choice between the green key and the blue key was of particular significance because both keys were associated with the same 4-sec signal. Whereas SET predicted no effect of the test signal duration on choice, LeT predicted that preference for green would increase monotonically with the length of the signal but would do so faster for Group 8 than for Group 16. The results were consistent with LeT, but not with SET.  相似文献   

6.
We have found proactive effects in pigeons’ timing behavior, a finding inconsistent with internal-clock models of timing that assume a resetable working-memory component. Six pigeons were trained to discriminate between 2- and 10-sec illuminations of a white light; choice of a red pecking key was correct and rewarded after presentation of the short stimulus whereas choice of a green key was correct and rewarded after presentation of the long stimulus. During training sessions, there were 60 trials separated by a 20-sec intertriai interval; short and long light occurred in a randomized order and correct choices were reinforced with 5-sec access to grain on a partial (75%) schedule. During test sessions, there were 120 trials separated by a 2-sec intertrial inter val. Light presentations occurred in a fixed order throughout these sessions: 2, 6, 10, 10, 6, 2 2, 6, 10 sec, and so forth. Choice of either red or green after 6 sec was not reinforced. However, red continued to be correct after 2 sec and green continued to be correct after 10 sec. Of central interest was how the subjects classified 6 sec of light in ascending (2, 6, 10) and descending (10. 6, 2) sequences of durations: Subjects chose the short alternative on 42% of the 6-sec trials in ascending series but only 29% in descending series, a result most plausibly interpreted as show ing that duration information from a preceding trial affects duration classifications on the cur rent trial. Such proactive effects should not occur according to working-memory models that as sume that stored information is cleared at the end of a trial.  相似文献   

7.
Five pigeons were trained to discriminate between 2- and 10-sec illuminations of a white light; choice of a red pecking key was correct and rewarded after presentation of the short stimulus, whereas choice of a green key was correct and rewarded after presentation of the long stimulus. On half the trials, the light was bright; on the others, it was dim. Durations of 4, 6, and 8 sec of both dim and bright light were also presented; choices on these trials were not rewarded. The probability of the pigeons’ choosing the short alternative decreased in a graded manner as duration of both bright and dim light increased from 2, to 4, to 6, to 8, and to 10 sec. However, the pigeons were more likely to choose the short alternative with longer durations of the dim light than the bright light, a result that implies that the perceived duration of a dim light was shorter than that of a bright light of equal length. One interpretation of this effect is that stimulus intensity affects the rate of the pacemaker in an internal clock mechanism subserving timing of event duration.  相似文献   

8.
The present experiment examined the effects of several disruptors on temporal discrimination. Pigeons responded under a 0-delay symbolic matching-to-sample procedure in which responses to one key color were reinforced following the presentation of four shorter sample durations, and responses to another key color were reinforced following the presentation of four longer sample durations. Steady-state performance was disrupted by presession feeding, intertrial-interval food, visual distraction, and extinction. All disruptors decreased temporal-discrimination accuracy. Analyses of the fitted cumulative normal functions indicated that decreases in accuracy were produced mainly by decreases in overall stimulus control rather than specific effects on timing. In addition, all disruptors selectively decreased accuracy on long-sample trials—a choose-short effect. This effect is interpreted in terms of decreased attention to the samples under disruption. Current theories of the choose-short effect do not appear to easily account for these results.  相似文献   

9.
We used an appetitive sensory preconditioning procedure to investigate temporal integration in rats in two experiments. In Phase 1, rats were presented with simultaneous compound trials on which a 10-sec conditioned stimulus (CS) X was embedded within a 60-sec CS A. In Group Early, CS X occurred during the early portion of CS A, whereas in Group Late, CS X occurred during the latter portion of CS A. In Phase 2, CS X was paired simultaneously with sucrose. On a subsequent test with CS A, the rate of magazine entries peaked during the early portions of the stimulus in Group Early and during the latter portions of the stimulus in Group Late (Experiments 1 and 2). Similar response peaks were not observed on tests with a control stimulus that had been presented in compound with a stimulus that did not signal reward (Experiment 2).  相似文献   

10.
The effects of signal duration when choosing between signaled and unsignaled response-independent reinforcers were examined in two experiments. In Experiment 1, albino rats were given a choice between signaled and unsignaled food delivered on variable-time 60-sec schedules using a 20-sec signal. All subjects preferred the signaled schedule at a level comparable to that reported in an earlier study using a 5-sec signal. Experiment 2 presented six rats with a direct choice between a 5-sec and a 20-sec signal condition, and three rats with a choice between a 1.5-sec and a 5-sec signal duration. Subjects preferred the 20-sec signal over the 5-sec signal, but no pReference was found with the 1.5-sec vs. a 5-sec signal. Current theoretical views, such as delay reduction and behavioral competition, are considered.  相似文献   

11.
Five groups of pigeons were trained in a symbolic choice-matching feast involving short (2-sec) and long (10-sec) durations of houselight as samples. Four groups also received training with a second set of samples: line orientations or 2- and 10-sec presentations of keylight. The type of sample-to-comparison mapping varied across groups. Although only two of the five groups demonstrated a choose-short effect (a tendency to choose the comparison associated with a short sample at longer delays), all groups demonstrated temporal summation (a tendency to respond on the basis of the combined duration of two successively presented samples). Moreover, the magnitude of temporal summation was equivalent in groups that did and did not-demonstrate a choose-short effect. The results suggest that the processes underlying the perception of sample duration remain invariant across different sample-to-comparison mapping arrangements, but that the memory code used to retain temporal information varies.  相似文献   

12.
In Experiment 1, pigeons were trained with a 1-sec dark and a 1-sec houselight-illuminated delay interval to discriminate between sequences of two and four flashes of light (feeder illumination). The sequences could be discriminated on the basis of the number of flashes, the number of gaps, or the duration of the gap between flashes. A choose-few bias was obtained at extended dark delays, but not at extended illuminated delays. Pigeons appeared to confuse long dark delays with the longer gap between flashes on few-sample trials. In Experiment 2, additional sample sequences were included that made gap duration an unreliable cue for discriminating between the few and many samples. A significant choose-many bias was obtained at extended dark delay intervals, but no biased forgetting was found at extended illuminated delays. The pigeons appeared to discriminate light flash sequences by relying on multiple temporal features of a sequence rather than using an event switch to count flashes. The biased-forgetting effects observed appear to be due to instructional ambiguity that results from the similarity of the delay interval to features of the flash sequences. nt]mis|This research was supported by Grant OGPOOD6378 from the Natural Sciences and Engineering Research Council of Canada to A.S.  相似文献   

13.
In seven experiments, an effect of the intertriai interval (ITI) duration on barpressing by rats was studied. A stimulus signaled a 15-sec variable-interval trial. The first response after the interval elapsed turned the stimulus off and was rewarded with food. Trials were separated by long (about 300 sec) or short (about 10 sec) ITIs. A within-subjects design established that response rate on trials after long ITIs was lower than that after short ITIs (Experiments 1 and 3–7). The effect was not cumulative (the effect of one and five consecutive short ITIs was the same). Response rate after short and long ITIs was the same when a between-subjects design was used (Experiment 2). Response rate was higher after 160-sec ITIs than after 300-sec ITIs, suggesting that the ITI duration at which all longer ITIs are treated the same (i.e., the upper limit) is greater than 160 sec (Experiment 3). When food, the trial stimulus, a novel stimulus, or a familiar stimulus never paired with food, was presented 10 sec before the next trial during some of the long ITIs, response rate on the next trial was similar to that found after 10-sec ITIs (Experiments 4–6). This similarity suggested that these events could mark the start of the ITI. However, the familiar stimulus did so only when it reliably predicted that the next trial would occur after a short interval. The effect of ITI duration on responding was apparently attributable to response latency. Response latency was greater after long ITIs, but once responding began, it was similar after long and short ITIs (Experiment 7).  相似文献   

14.
In two experiments, pigeons' responding on an extraneous task was explicitly reinforced during delayed matching-to-sample trials. In Experiment 1, red or green sample stimuli were followed by retention intervals of 0.2, 1, 4, or 12 sec, during which pecks to a white center key were reinforced with 2.5-sec access to wheat according to extinction, variable-interval 30-sec, and variable-interval 15-sec schedules in different conditions. A proportion of .2, .5, .7, or .9 of subsequent red or green choice responses that matched the sample were reinforced with 3-sec access to wheat. The result was that increasing center key reinforcement, or reducing reinforcer probability, lowered overall accuracy. Initial discriminability fell, but with no change in the rate of forgetting. In Experiment 2, initial discriminability was affected by extraneous reinforcers that were contingent on center key pecking, but not by noncontingent reinforcers. A plausible conclusion is that initial discriminability decreases when reinforcers strengthen competing behaviors.  相似文献   

15.
There is evidence that humans' perception of time is affected by the activity in which they are engaged while they are timing. The more demanding the task, the faster time appears to pass. A similar effect has been found in pigeons. Pigeons trained to discriminate between a short-duration (2-sec) and a long-duration (10-sec) stimulus were required to peck when the stimulus was one color and to refrain from pecking when it was a different color. On probe trials of intermediate durations, the bisection point (50% choice of the stimulus associated with both long and short stimuli) for trials in which the pigeons were required to peck was almost 1 sec longer than on trials in which the pigeons were required to refrain from pecking (Zentall, Friedrich, & Clement, 2006). In the present research, we replicated this effect and determined the relation between this effect and the typical bisection point that occurs when pecking is permitted but not required. Results indicated that the typical procedure results in a bisection point that is between required pecking and refraining from pecking. Furthermore, the rate of pecking when pecking is allowed but not required also falls between the rate of pecking for the required-pecking and refrain-from-pecking conditions. This result suggests that, similar to humans, pigeons underestimate the passage of time when they are active or when attention to time-related cues has to be shared with attention to satisfying the response requirement.  相似文献   

16.
Pigeons learned a series of reversals of a simultaneous red-green visual discrimination. Delay of reinforcement (0 vs. 2 sec) and intertrial interval (ITI; 4 vs. 40 sec) were varied across blocks of reversals. Learning was faster with 0-sec than with 2-sec delays for both ITI values and faster with 4-sec ITIs than with 40-sec ITIs for both delays. Improvement in learning across successive reversals was evident throughout the experiment, furthermore, even after more than 120 reversals. The potent effects of small differences in reinforcement delay provide evidence for associative accounts and appear to be incompatible with accounts of choice that attempt to encompass the effects of temporal parameters in terms of animals’ timing of temporal intervals.  相似文献   

17.
Pigeons were trained on duration matching-to-sample in which each of four combinations of signal type (red or white light) and duration (2 or 10 see) was mapped onto a different choice stimulus. Probe trials in Experiments 1 and 2 involved a successive presentation of two duration samples. In each experiment, birds tended to summate two durations when the same signal was presented twice, but not when two different signals appeared. These results contrast with those reported by Spetch and Sinha (1989), who found a summation effect with both same-signal and different-signal compounds. In Experiment 3, pigeons chose among two alternatives which were both associated with the duration of the sample but of which only one was also associated with the signal type of the sample. Pigeons systematically chose the stimulus that matched both sample duration and signal type. The implications of these findings are discussed in terms of transfer of training and coding of event duration.  相似文献   

18.
The relationship between the duration of stimuli and their conditioned reinforcing effect was investigated using a learning-tests procedure. In Experiment 1, stimuli were the same duration on training (stimulus → reward) and test (choice response → stimulus). Ten- and 30-sec stimuli provided effective differential conditioned reinforcement but 3-sec stimuli did not. In Experiment 2, different pigeons had each combination of the 3- and 30-sec stimuli on training and test trials. Evidence of conditioned reinforcement was obtained only for the birds with 30-sec stimuli on both training and test. The results were interpreted as indicating that stimuli become effective conditioned reinforcers on test trials only when their duration exceeds the duration of differential short-term memory cues resulting from a difference in the events that precede them on training and test trials.  相似文献   

19.
In a second-order schedule, fixed-interval components were reinforced according to a variable-interval schedule. A brief stimulus accompanied the completion of each fixed interval. Brief-stimulus duration was varied across conditions from 0.5 to 8 sec. Patterning was greater the longer the duration of the stimulus. Additionally, exposure to relatively long brief-stimulus durations enhanced patterning upon reexposure to shorter brief-stimulus durations.  相似文献   

20.
In Experiment 1, pigeons were trained in a within-subjects design to discriminate sequences of light flashes (illumination of the feeder) that varied in number, but not in time (2f/4sec and 8f/4sec), and in time, but not in number (4f/2sec and 4f/8sec). Number samples required a response to one of two comparison dimensions (either color or line), whereas time samples required a response to the remaining comparison dimension. Delay testing revealed a significant choose-small bias following number samples and a significant choose-long bias following time samples. In Experiment 2, testing confirmed that in the absence of a sample, there was a bias to respond small to the number comparisons and long to the time comparisons. Additional tests indicated that the birds were discriminating time samples on the basis of the number of light flashes occurring during the last few seconds of the time samples, rather than on the basis of the total duration of the flash sequence. Consequently, the choose-long bias observed for time samples during delay testing was really a choose-small bias. In Experiment 3, the birds received baseline training with a 5-sec delay and were subsequently tested at shorter and longer delays. A choose-large bias occurred at delays shorter than the baseline training delay, whereas a choose-small bias was again observed at delays longer than the baseline delay. These findings provide additional empirical support for the conceptualizing of memory for number and time in terms of a common mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号