首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
反比例函数y=k/x(k≠0)中,比例系数k有一个很重要的几何意义.如图1,P为反比例函数y=k/x图像上任一点,过点P作PM⊥x轴于M,PN⊥y轴于N,得到矩形PMON.若设点P的坐标为(x,y),则PM=∣y∣,PN=∣x∣,所以S矩形PMON=∣y∣×∣x∣=∣xy∣.  相似文献   

2.
Schrdinger方程-Δu+λ2u=u2q-2u有唯一的正径向对称解Uλ,当r→∞时Uλ指数衰减到零.因此可以预料薛定谔方程组-Δu1+u1=u12q-2u1-εb(x)u2qu1q-2u1,-Δu2+u2=u22q-2u2-εb(x)u1qu2q-2u2存在在某些点附近形同Uλ的多峰解.对于u=(u1,u2)∈H1(R3)×H1(R3)定义非线性泛函Iε(u)=I1(u1)+I2(u2)-ε/q∫R3b(x)u1qu2qdx,其中I1(u1)=1/2‖u1‖2-1/2q∫R3u12qdx,I2(u2)=1/2‖u2‖2ω-1/2q∫R3u22qdx.证明了此泛函的临界点就是薛定谔方程组的解.设Z为非扰动问题的解流形,TzZ为此流形的切空间.寻求Iε的形如z+w的临界点,其中w∈(TzZ)⊥.应用Iε的性质,证明了Iε存在近似于(∑ni=1U(x-ξi),∑ni=1V(x-ξi))的多峰解.  相似文献   

3.
主要应用环绕定理及一些解的估计来讨论一类半线性椭圆方程:-△u-μ/(|x|2)u=k(x)|u|2*-2u+λu,u∈H01(Ω),当k(x)满足一定条件时,方程存在一个非平凡解。  相似文献   

4.
用设二次函数y=ax2 bx c的图象与x轴的两个交点为A和B,则两交点的横坐标分别是方程ax2 bx c=0的两个根x1、x2,易求得线段A B=∣x1-x2∣=(x1 x2)姨2-4x1x2=(-ba)2-4ca姨=姨b2-4ac∣a∣.若已知或易求得二次函数的图象与x轴的两个交点之间的距离,则可以用这个公式来求二次函数的解析式.请看下面几道例题.例1以(1,2)为顶点的抛物线与x轴交于A、B两点,与y轴交于点M.已知A B=4,求这条抛物线的解析式.解:因为抛物线的顶点为(1,2),故设这条抛物线的解析式为y=a(x-1)2 2=ax2-2ax a 2.设A、B两点的坐标分别为(x1,0)、(x2,0),则A B=4a2-4a(a 2)姨…  相似文献   

5.
给出了半线性椭圆方程-Δu=λ1u+|u|2*-2u+τ(x,u)的Dirichlet问题在对扰动项τ(x,u)增加适当条件后非平凡解的存在性定理,以及方程-Δu=λu-|u|2*-2u+h(x),λ∈[λ1,λk](这里λk是方程-Δu=λu的第k个互不相等的特征值)的非零解的存在性定理.  相似文献   

6.
在关于k,hb,μb的非常弱的假设条件下,在Sobolev空间中证明了非齐次Dirichlet边界条件u=ud(x,y), (x,y)∈(e)Ω下非齐次椭圆型Boussinesq方程-(△)*(K(x,y)(u-hb)(△)u)=f(x,y,u), (x,y)∈Ω的解的唯一性以及齐次椭圆型Boussinesq方程(△)*(K(x,y)(u-hb)(△)u)=0, (x,y)∈Ω的解的存在性,其中Ω为有界多边形域.并给出反例,指出对一给定的f(x,y),非齐次方程-(△)*(K(x,y)(u-hb)(△)u)=f(x,y,u), (x,y)∈Ω的Dirichlet问题是不可解的.  相似文献   

7.
考虑如下Kirchhoff方程:-(a+b ∫R|▽u 〡2dx)△u=V(x)u=f(x,u),x∈RN(E)非平凡弱解的存在性问题,利用临界点理论中的山路引理,方程(E)弱解的存在性结果被证明.  相似文献   

8.
给出了半线性椭圆方程-△u=λ1u |u|^2^*-2u τ(x,u)的Dirichlet问题在对扰动项τ(x,u)增加适当条件后非平凡解的存在性定理,以及方程-△u=λu-|u 2^*-2u h(x),λ∈[λ1,λk](这里λk是方程-△u=λu的第κ个互不相等的特征值)的非零解的存在性定理。  相似文献   

9.
错在哪里     
题 过点P(2,1)的直线l交x轴与y轴正半轴于A、B两点,求使∣PA∣·∣PB∣最小时,直线l的方程.  相似文献   

10.
论文主要考虑如下形式的非局部问题ut=Δu+λu∫Ω1(y,t)fπ(x,y)dy,x∈Ω,t0,u|Ω=0,t0,(0,1)u(x,0)=g1(x)x∈Ω1,其中fσ(x,y)=1,0,y∈Ω1,x∈Ω,其他,并且k∈(0,1],Ω=[-1,1]×…×[xn-k,xn+k],x∈Ω,x=(x1,…xn),,并利用Matlab实验对(0.1)的平衡解进行了研究,得到以下数值结果1.若λnπ2/4,上述问题有一个稳定的平衡解u=0;2.若λnπ2/4,上述问题有两个稳定的平衡解u=0和u=uλ0.其中n 1,2,…,从而为进一步研究非局部问题的解析解奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号