首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“十字相乘法”是初中教材中应用较广的内容,但一般学生往往习惯于直接的应用,其实稍加变化,可应用得更灵活,并可从中培养学生灵活解题的能力,现举例说明如何更广泛地应用“十字相乘法”。例1 解方程2x~2+3x-5(2x~2+3x+9)~(1/2)+3=0。解:原方程可化为2x~2+3x+9-5(2x~2+3x+9)~(1/2)-6=0,如果我们以(2x~2+3x+9)~(1/2)作为一个变量X,则方程便是X~2-5X-6=0,用十字相乘法,得((2x~2+3x+9)~(1/2)-6)((2x~9+3x+9)~(1/2)+1)=0由(2x~2+3x+9)~(1/2)=6,解得x_1=-9/2,x_2=3。而(2x~2+3x+9)~(1/2)=-1,无解。经检  相似文献   

2.
题 用换元法解方程((x 2)/(x-1))~(1/2) ((x-1)/(x 2))~(1/2)=5/2。 (人教版初中代数第三册第57页第3题) 解法一 (运用倒数关系换元) 设((x 2)/(x-1))~(1/2)=y,则((x-1)/(x 2))~(1/2)=1/y, ∴原方程化为y (1/y)=5/2, 解这个方程,得y_1=2,y_2=1/2。 当y=2时,((x 2)/(x-1))~(1/2)=2, 解之,得x_1=2;  相似文献   

3.
第一试一、解方程:(x+3)~(1/2)=|x-2|-1.解:先限定 x≥2:这时|x-2|=x-2,原方程化为(x+3)~(1/2)=x-3,x+3=x~2-6x+9,∴x~2-7x+6=0,(x-6)(x-1)=0,∴x_1=6,x_2=1(x_2不合我们的限定,舍  相似文献   

4.
初中《代数》第三册11.9,在解无理方程时指出:“为了把无理方程变形为有理方程,需要将方程的两边都乘方相同的次数,这样就有产生增根的可能。”怎样引导学生对上述这句话进行深化理解呢?我们从以下三个方面作了补充说明: 1.将方程的两边都平方或偶次乘方时,增根赤源于乘数的有理化因式的零点。例1 解方程(x-2)~(1/2)=8-x ①解:方程两边平方,得x-2=(8-x)~2 ②即x~2-17x+66=0,∴x_1=6,x_2=11。  相似文献   

5.
我们知道,转化是解题过程的一个重要环节。如何实现转化呢?构造辅助方程可算一个有力的措施。下面通过若干例子加以说明。一、在代数求值中的应用 [例1] 求值:(20+14 2~(1/2))~(1/3)+(20-14 2~(1/2))~(1/3)。解:令原式=x,得辅助方程 x=(20+14 2~(1/2))~(1/3)+(20-14 2~(1/2))~(1/3) 立方,得x~3-6x-40=0 (x-4)(x~2+4x+10)=0 ∵x~2+4x+10>0 ∴x-4=0,x=4。故原式等于4。  相似文献   

6.
构造“零值”代数式,解一类条件代数式求值问题,整体意识强,简捷明快、现举例说明.例1 已知x=2-5~(1/5),那么x~4-8x~3+16x~2-x+1的值是(?).(第六届“希望杯”初二数学竞赛题)解∵x=2-5~(1/5),∴2-x=5~(1/5).两边平方,整理得x~2-4x-1=0.∴x~4-8x~3+16x~2-x+1=x~2(x~2-4x-1)-4x(x~2-4x-1)+(x~2-4x-1)-x+2=-x+2=5~(1/5)  相似文献   

7.
用适当方法构造与原问题有关的方程,利用方程的知识使原题获解,此为“辅助方程法”。一、解方程(组) 例1 解关于x的方程 x~4 6x~3-2(a-3)x~2 2(3a 4)x 2a a~2=0 解:化为a的方程: a~2-2(x~2-3x-1)a (x~4-6x~3 6x~2 8x)=0解得a=x~2-4x,a=x~2-2x-2。故得原方程的解x_(1,2)=2±4~(1/2) a,x_(3,4)=1±(3 a)~(1/2)(注;a<-3时,有虚根)  相似文献   

8.
解分母部分含有根式的无理方程,通常的方法是化无理为有理,化分式为整式,但有时运算量较大,笔者结合自己的教学实践,归纳了这类无理方程解法的一些方法和技巧。一利用函数的定义域和值域 [例1] 解方程 1/((x~2)+5x-14-1)~(1/2)-1/(2-(x+7)~(1/2)=((2-x+5)~(1/2)))/(5~(1/2))-1/(5~(1/2))分析,观察三个根式内部的关系:x~2+5x-14=(x+7)(x-2),试着先讨论末知数x的取值范围。  相似文献   

9.
转化是一种常见的有效的数学思想方法,根据问题的特点转化为易解决的新问题,本文仅通过解方程来说明这种方法的应用。例1 解方程:(x-2 2((x-3)~(1/2)))~(1/2) (x 1 4((x-3)~(1/2)))=5 解:原方程转化为:(((x-3)~(1/2) 1)~2)~(1/2) (((x-3)~(1/2) 2)~2)~(1/2)=5, ∴ (x-3)~(1/2)=1,∴ x=4 经检验:x=4是原方程的解例2 解方程(x~2 12x 99)~(1/2) (x~2-12x 99)~(1/2)=20 解:原方程转化为:((x 6)~2 63)~(1/2) ((x-6)~2 63)~(1/2)=20 设y~2=63,方程又可转化为:以(-6,0)、(6,0)为焦点,长轴2a=20的椭圆方程,易知2b=2((10~2-6~2)~(1/2))=16故椭圆方程为:x~2/10~2  相似文献   

10.
妙解方程     
题目解方程(2x-1)~(1/2)+(2-3x)~(1/2)+(6x~2-7x+2)~(1/2)=x~(1/2).分析本题若采取常用的方法——两边平方,移项、合并同类项、再平方,……,将会有大量繁杂的计算,并且很可能有错误.我们利用根式的性质——被开方数不小于0,本题即可获  相似文献   

11.
1.方程组{ax+y=a~2 x+ay=1 有多少解? 2.方程组{ax+y+z=1 x+ay+z=a x+y+az=a~2 有多少解?3.解方程|x-1|+|x-2|+|x-3|=x。 4.解方程(x+3-4(x-1)~(1/2)~(1/2)+(x+8-6(x-1)~(1/2))~(1/2)=1。5.下列方程是否有实根?  相似文献   

12.
有些类型的方程用通常的方法往往不易解得,例如解下列方程: (1)E(x)=2;(2)E(x)=4,其中E(x)=x~2甚至是否有解也难确定,但是如果能利用递推数列则不难求解。本文旨在通过解方程(1)来介绍这一方法: 为解方程(1),我们可令一个递推数列: x_(n+1)=(2~(1/2))~x_n,x_0=1。不难看出,{x_(n+1)}是一个单调递增数列,这是因为当x_n>1_(n-1)时,有 x_(n+1)/x_n=(2~(1/2))~x_n/(2(1/2))~x_(n-1)=(2~(1/2))~(x_x-x_(x-1))>1。而用数学归纳法,我们还可以证得{x_(2+1)}是一个有界数列:  相似文献   

13.
你会解方程x=2~(1/2)+(2+x)~(1/2)吗?请动笔试一试. 解法1 平方法这是一个无理方程,早在读初中的时候,就知道可以通过平方化为有理方程,从而得解得  相似文献   

14.
<正> 代数一、填空: 1、计算:[(-2)~2]~(-(1/2))+2°/(2~(1/2)) -1/(|1-2~(1/2)|)=-(2~(1/2)+1)/2 2、把x~5y-x~3y+2x~2y-xy分解因式为xy(x~2+x-1)(x~2-x+1) 3、已知((2a+b~(-1))~2+|2-a~2|)/(a+2~(1/2))=0,则(a-b)/(a+b)=(3/5) 4、计算1/2lg25+lg2-lg0.1~(1/2)-log_29×log_32=-(1/2) 5、设A={x:|x|<2}, B={x:x~2-4x+3≤0},则A∩B=1≤x<2;A∪B=-23的解集为{x:x>4}∪{x:0相似文献   

15.
等比数列前n项的求和公式的推论: (a-b)(a~(n-1)+a~(n-2b)+…+b~(n-1))=a~n-b~n以及它的特殊形式: (1-q)(1+q+q~2+…+q~(n-1))=1-q~n都是因式分解的重要公式,而因式分解则是解题(如求值,证明等)的重要手段,以下各例,可以说明。例1 分解因式X~(12)+x~9+x~6+x~3+1(1978年全国数学竞赛决赛题) =(x~4+x~3+x~2+x+1) (x~8-x~7+x~5-x~4+x~3-x+1) 例2 已知ω=e~((2π/5)i),求1+ω~4+ω~8+ω~(12)+ω~(16)之值。解原式=((1-ω~4)(1+ω~4+ω~8+ω~(12)+ω~(16))/1-ω~4 =(1-ω~(20))/(1-ω~4)=(1-(ω~5)~4)/(1-ω~4) ∵ω~5=(e~((2π/5)i))~5=e~(2πi)=1 ω~4=e~((8/5)πi)≠1 ∴原式=0 例3 求能使2~n-1被7整除的所有正整数n。(第六届国际数学竞赛题) 解分二种情况讨论。 (1)如果n是3的倍数,我们设n=3k(k为正整数),这时  相似文献   

16.
多项式除法的应用广泛,不仅可以利用它来解方程、因式分解等。它还有一些妙用,今举几个例子于下。一、求值例1,若x=(19-8(3~(1/2))~(1/2),试求(x~4-6x~3-2x~2 18x 23)/(x~2-8x 15)之值(1985年全国初中联赛试题) 解:∵ x=(19-8(3~(1/2))~(1/2)=(4-3~(1/2))~2)~(1/2)=4-3~(1/2) ∴(x-4)~2=3即 x~2-8x 13=0 应用多项式除法得  相似文献   

17.
利用增量代换来解答和处理问题的方法叫做增量代换法。增量代换法是中学教学中的一种重要方法,在解决众多的数学问题中表现出奇妙的作用。一、解方程例1 解方程 (2x~2-3x+7)~(1/2)-(2x~2-3x+2)~(1/2)=1。解;由此方程的特征,可设 (2x~2-3x+7)~(1/2)=1+a, (1)则(2x~2-3x+2)~(1/2)=a(a≥0)。 (2)(1)~2-(2)~2得a=2。∴ (2x~2-3x+2)~(1/2)=2。解得 x_1=2,x_2=-1/2。经检验知,均为原方程的根。二、证不等式例2 设a,b,m∈P~+,且aa/b。证明:由已知不妨设b=a+a(a>0),则  相似文献   

18.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

19.
无理方程解法很多,许多书刊都作过介绍,如数学通报1979年第6期曾载《无理方程的几种特殊解法》一文。我们在教学中还用过以下几种解法,介绍于下。一分母有理化例1 解方程(x+1)~(1/2)-(x-1)~(1/2)/(x+1)~(1/2)+(x-1)~(1/2)=2-x 这个方程的左边有四个无理式(二次根式),若两边同时平方,则会出现更复杂的无理式。如果我们将左边分母有理化,就可以使解法简化。解分母有理化并把原方程变形为  相似文献   

20.
初中《代数》第三册P135习题7(2)有这样一道题:解方程。(x+2/x-1)~(1/2)+(x-1/x+2)~(1/2)=5/2.按照常规方法求解,首先需把方程左边一项移到右端,再将两边平方,消去一个根号;合并整理后再次平方,转化为一元二次方程,从而求得原方程的解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号