首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rate of information processing during science learning and the efficiency of the learner in mobilizing relevant information in long-term memory as an aid in transmitting newly acquired information to stable storage in long-term memory are fundamental aspects of science content acquisition. These cognitive processes, moreover, may be substantially related in tempo and quality of organization to the efficiency of higher thought processes such as divergent thinking and problem-solving ability that characterize scientific thought. As a contribution to our quantitative understanding of these fundamental information processes, a mathematical model of information acquisition is presented and empirically evaluated in comparison to evidence obtained from experimental studies of science content acquisition. Computer-based models are used to simulate variations in learning parameters and to generate the theoretical predictions to be empirically tested. The initial tests of the predictive accuracy of the model show close agreement between predicted and actual mean recall scores in short-term learning tasks. Implications of the model for human information acquisition and possible future research are discussed in the context of the unique theoretical framework of the model.  相似文献   

2.
ABSTRACT

Many science curricula and standards emphasise that students should learn both scientific knowledge and the skills associated with the construction of this knowledge. One way to achieve this goal is to use inquiry-learning activities that embed the use of science process skills. We investigated the influence of scientific reasoning skills (i.e. conceptual and procedural knowledge of the control-of-variables strategy) on students’ conceptual learning gains in physics during an inquiry-learning activity. Eighth graders (n?=?189) answered research questions about variables that influence the force of electromagnets and the brightness of light bulbs by designing, running, and interpreting experiments. We measured knowledge of electricity and electromagnets, scientific reasoning skills, and cognitive skills (analogical reasoning and reading ability). Using structural equation modelling we found no direct effects of cognitive skills on students’ content knowledge learning gains; however, there were direct effects of scientific reasoning skills on content knowledge learning gains. Our results show that cognitive skills are not sufficient; students require specific scientific reasoning skills to learn science content from inquiry activities. Furthermore, our findings illustrate that what students learn during guided inquiry activities becomes visible when we examine both the skills used during inquiry learning and the process of knowledge construction. The implications of these findings for science teaching and research are discussed.  相似文献   

3.
This study investigated the role of broad cognitive processes in the development of mathematics skills among children and adolescents. Four hundred and forty-seven students (age mean [M] = 10.23 years, 73% boys and 27% girls) from an elementary school district in the US southwest participated. Structural equation modelling tests indicated that calculation complexity was predicted by long-term retrieval and working memory; calculation fluency was predicted by perceptual processing speed, phonetic coding, and visual processing; problem solving was predicted by fluid reasoning, crystallised knowledge, working memory, and perceptual processing speed. Younger students’ problem solving skills were more strongly associated with fluid reasoning skills, relative to older students. Conversely, older students’ problem solving skills were more strongly associated with crystallised knowledge skills, relative to younger students. Findings are consistent with the theoretical suggestion that broad cognitive processes play specific roles in the development of mathematical skills among children and adolescents. Implications for educational psychologists are discussed.  相似文献   

4.
A neuromathematical model of information processing applied to science learning is exanded to include coefficients representing the motivational state of the learner. Two coefficients be included: (1) an exponential coefficient in the gain function representing largely a change rate of learning associated with varying motivation, and (2) an initial factor in the gain quation change in motivation at the outset of a learning task. The inclusion of these variables permits modeling of the effects of variations in motivation on the rate and amount of information in a larning task.  相似文献   

5.
The purpose of this study was to apply the depth of cognitive processing construct to a social constructivist analysis of students' collaborative knowledge building in science. Ten sensemaking discussions of five groups of 8th grade students in five physical science classrooms were analysed. Sense-making discussions were defined by the teachers as those in which students explained thier laboratory observations, or construted, applied, and refined conceptual models of the nature of matter. Discussion diagrams were used to depict both the conceptual content and the reasoning processes within the peer groups' discussions. Depth of processing was judged by the extent to which students elaborated on and connected ideas, scrutinised and clarified propositions, constructed explanations rather than reiterated observations, and backed explanations with evidence. Two of the groups tended to process information on a surface level, while the other three groups tended to engage in deeper processing. The interplay of depth of sociocognitive processing with the motivational, cognitive, and discursive elements of groups' interactions are discussed, as is the relationship between accuracy of ideas and depth of processing. Finally, suggestions are made for how both student and teacher strategies can be enhanced to increase students' depth of sociocognitive processing when they collaboratively build knowledge with their peers.  相似文献   

6.
Path analysis techniques were used to test a hypothesized structural model of direct and indirect causal effects of student variables on science process skills. The model was tested twice using data collected at the beginning and end of the school year from 67 9th- and 10th-grade biology students who lived in a rural Franco-American community in New England. Each student variable was found to have significant effects, accounting for approximately 80% of the variance in science process skills achievement. Academic ability, biology knowledge, and language preference had significant direct effects. There were significant mediated effects by cognitive development, parents' education, and attitude toward science in school. The variables of cognitive development and academic ability had the greatest total effects on science process skills. Implications for practitioners and researchers are discussed.  相似文献   

7.
Recent advances in the neurosciences have begun to elucidate how some fundamental mechanisms of nervous system activity can explain human information processing and the acquisition of knowledge. Some of these findings are consistent with a cognitive view of constructivist models of learning and provide additional theoretical support for constructivist applications to science education reform. Current thought at the interface between neurocognitive research and constructivist philosophy is summarized here and discussed in a context of implications for scientific epistemology and conceptual change processes in science education.  相似文献   

8.
In an era marked by an excessive exposure to information and disinformation, this article explores how the public in France engages with critical thinking on the topics of scientific information and knowledge, as well as associated debates. First, a panel survey was carried out in 2022 by the science education centre Universcience in Paris in collaboration with the survey institute GECE. A total of 3,218 respondents participated in the survey in France. The survey questions focused on three themes: (1) the substantial relationship between respondents' scientific reasoning and critical thinking; (2) sources that respondents used for information, particularly on scientific subjects, to form an understanding of current events; (3) respondent relationships to discourses in the sciences and otherness in reasoning. In this study, critical thinking was defined as the ability to sort and make sense of available information and to question one's opinions. Also, the ability to discern trustworthy sources and information. In this approach, critical thinking is a condition for correctly assessing information on science topics. This is understood to include knowledge about science, its processes of knowledge production, and quality sources of information in the natural sciences. In this study, a Barometer of Critical Thinking was developed, and a survey was carried out. Survey results and the development of the barometer are described. Finally, we discuss how developing scientific literacy (knowledge about scientific facts, methods, practices and sources) is crucial in order to foster critical thinking on scientific information, knowledge, debates, and beyond.  相似文献   

9.
Conclusions The main feature of Piaget & Garcia's study (1989) is the overture of a new field of research within the Piagetian framework, namely the comparative study of individual and historical development.During the 80's, several alternative models have been offered to account for the relations between individual and historical development. However, it has been suggested that there [...] appears to be widespread agreement among Piagetians and non-Piagetians that common mechanisms and processes underlie the thinking of scientists and children at all times (Gauld 1990, p. 24–5).The development of this field of research demands that theoretical research be conducted regarding the possible patterns of relationship between individual and historical development, that should be integrated to comparative empirical research on diverse topics. Further studies would then be required to provide an empirical basis for the comparative research. In other words, this field of research demands the close collaboration between epistemologists, historians, science educators, and cognitive psychologists.We have suggested that the Piagetian model needs to provide a more convincing account of the differences between individual and historical development, and of the role of internal and external factors in the progress of science. We have also argued for an overcoming of the overemphasized structural aspects of the theory, and for an unambiguous concept of history.The non-Piagetian approaches have their own strength and may be developed as alternatives to the Piagetian model. However, our intention here is to emphasize their potential contribution to the development of Piaget's theory. In McCloskey and Kargon (1988) we may find hints to deal with the specificity of similarities in content. Nersessian (1987) provided an excellent insight on how to deal with Kuhn's concept of incommensurability. 5 In our interpretation, Carey's work suggest that considering the relation between content and development of structures may be a productive way of developing Piaget's theory.Finally, we would like to comment on the relationship between Piaget's theory and research on students' thinking in science. Both adopt a constructivist stance. However, the vast majority of researchers have developed a strong resistance to Piaget's theory (e.g. Novak 1978; Gilbert and Swift 1985). On the one hand, this resistance should be considered a natural and healthy tendency toward a pluralistic development of research in science education. On the other hand, it may be a consequence of the difficulty of Piaget's theory in coping with the main research findings on spontaneous reasoning. In short, while many researchers in science education have emphasized the persistence of children's, adolescents' and adults' alternative conceptions, Piaget's theory suggests that reaching the formal stage is a necessary condition to understand science. This contradiction will not be overcome while Piagetian researchers are not able to offer a better account of the differences between commonsense knowledge and scientific knowledge. Freed from the constraints of the Piagetian approach, research on alternative conceptions showed an amazing development during the late 70's and the 80's. 6,7 Further progress, however, increasingly requires theoretical tools to manage the great amount of data already available, and models to explain, rather than just describe, individuals' thought. This task can be carried out from within different theoretical approaches. In Psychogenesis and the History of Science, Piaget and Garcia presented an updated and strong model for the relationship between individual and historical development. If used in an open-minded way, this model may contribute to the development of research in science education.This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico/Brazil.  相似文献   

10.
Cognitive science has the potential for offering explanatory models for many of the findings of empirical research in science education. In this paper, I use recent editions of international journals of science education to produce a categorisation of types of science education research, and what possible contributions each might make to cognitive science or the potential of results from cognitive science for enriching the science education research accounts. In a short, final section, the relationship of our own cognitive work to cognitive science is explored.  相似文献   

11.
Science locus of control (SciLOC) orientation is examined as a predictor of attitudes toward science teaching among 104 preservice elementary school teachers. SciLOC orientation refers to beliefs people hold regarding their personal efficacy, or ability to influence the outcome of events, in situations where decisions or actions require either the application of scientific knowledge or the use of reasoning skills associated with scientific thinking. A causal model that links such beliefs to attitudes toward science teaching was formulated and tested in this study. Multiple regression analysis demonstrates that 46% of the variance in attitudes toward science teaching expressed by subjects in the sample studied can be explained by SciLOC orientation. Path analysis of the proposed causal model accounts for 57% of the variance in expressed attitudes and 11% of the variance in SciLOC orientation. These results are interpreted as evidence that SciLOC orientation is a major contributor to attitudes expressed toward science teaching among preservice elementary teachers, with the major contributors to SciLOC orientation remaining to be identified. A troublesome relationship between expressed attitudes and academic performance in college science is also noted.  相似文献   

12.
The present study compared the relative effects of hands-on and teacher demonstration laboratory methods on declarative knowledge (factual and conceptual) and procedural knowledge (problem-solving) achievement. Of particular interest were (a) whether these relationships vary as a function of reasoning ability and (b) whether prior knowledge and reasoning ability predict student achievement. Ninth-grade physical science students were randomly assigned to classes taught by either a hands-on or a teacher demonstration laboratory method. Students' reasoning ability and prior knowledge of science were assessed prior to the instruction. The two instructional methods resulted in equal declarative knowledge achievement. However, students in the hands-on laboratory class performed significantly better on the procedural knowledge test than did students in the teacher demonstration class. These results were unrelated to reasoning ability. Prior knowledge significantly predicted performance on the declarative knowledge test. Both reasoning ability and prior knowledge significantly predicted performance on the procedural knowledge test, with reasoning ability being the stronger predictor.  相似文献   

13.
Clinically integrated curricula in health science education has been shown to promote the development of problem-solving schema and positively impact knowledge acquisition. Despite its’ purported benefits, this type of curricula can impose a high cognitive load, which may negatively impact novice learners’ knowledge acquisition and problem-solving schema development. Introducing explicit clinical reasoning instruction within pre-professional undergraduate basic science courses may limit factors that increase cognitive load, enhance knowledge acquisition, and foster developing clinical problem-solving skills. This study, conducted over the Fall and Spring semesters of the 2018–2019 school year, sought to evaluate whether the implementation of a clinical reasoning instructional intervention within a clinically integrated pre-professional undergraduate general human anatomy course influenced students’ acquisition of anatomical knowledge and development of clinical problem-solving skills. Results of the study were mixed regarding the acquisition of anatomical knowledge. Both the intervention and comparison groups performed similarly on multiple choice examinations of anatomical knowledge. However, the clinical reasoning intervention positively impacted students’ ability to apply clinical reasoning skills to anatomically based clinical case studies. Results from M\mixed between-within subjects analysis of variance comparing scores on Written Clinical Reasoning Assessments revealed a significant interaction between time and group affiliation, with the groups receiving the interventions outperforming the comparison groups: Fall, P < 0.001; Spring, P < 0.001. The results of this study may imply that explicit clinical reasoning instruction within a clinically integrated undergraduate Human Anatomy course could hold potential for fostering students’ early clinical reasoning skills.  相似文献   

14.
This study assessed the effectiveness of the systematic modeling teaching strategy on integrated science process skills and formal reasoning ability. Urban middle school students received a three-month process skill intervention treatment from teachers trained in either the use of systematic modeling or the learning-cycle model. A third, control group received traditional science instruction. The analysis of data revealed that (a) students receiving modeled instruction demonstrated a significant difference in their achievement of process skills when compared to either of the control groups. (b) Students taught by teachers who had received special process skill and strategy training demonstrated a significant difference in their process skill achievement when compared with the control group. (c) Students at different cognitive reasoning levels demonstrated significantly different process skill ability.  相似文献   

15.
Numerous persons have suggested that instruction should match the developmental level of the learner. Are “concrete operational” college students developmentally the same as “concrete operational” seventh grade students thus in need of identical instruction? Matched concrete operational seventh grade and college students were given identical classroom instruction in probabilistic and correlational reasoning. The college students performed significantly better on posttest measures which appeared to require greater processing of information while significant differences did not exist on less difficult items. Level of cognitive development, field independence, and fluid intelligence correlated moderately with posttest performance for the seventh grade students. Field independence and fluid intelligence correlated moderately with posttest performance for the college students but not pretest knowledge of specific biological concepts and cognitive level. It was concluded that college students are more responsive to instruction due either to (1) greater amount of experience or (2) greater information processing capacity. Implications for science teaching are discussed.  相似文献   

16.
The primary goal of this study was the broad assessment and modeling of scientific reasoning in elementary school age. One hundred fifty-five fourth graders were tested on 20 recently developed paper-and-pencil items tapping four different components of scientific reasoning (understanding the nature of science, understanding theories, designing experiments, and interpreting data). As confirmed by Rasch analyses, the scientific reasoning items formed a reliable scale. Model comparisons differentiated scientific reasoning as a separate construct from measures of intelligence and reading skills and revealed discriminant validity. Furthermore, we explored the relationship between scientific reasoning and the postulated prerequisites inhibitory control, spatial abilities and problem-solving skills. As shown by correlation and regression analyses, beside general cognitive abilities (intelligence, reading skills) problem-solving skills and spatial abilities predicted performance in scientific reasoning items and thus contributed to explaining individual differences in elementary school children's scientific reasoning competencies.  相似文献   

17.
This study investigated the relationship among 68 high school students’ scientific epistemological beliefs (SEBs), cognitive structures regarding nuclear power usage, and their informal reasoning regarding this issue. Moreover, the ability of students’ SEBs as well as their cognitive structures for predicting their informal reasoning regarding this issue was also examined. The participants’ SEBs were assessed with a quantitative instrument; their cognitive structures were assessed through tape‐recorded interviews and were further analyzed with the ‘flow map method’; their reasoning regarding nuclear power usage was assessed with an open‐ended questionnaire; and, then, their responses were analyzed both qualitatively and quantitatively. It was revealed that students’ beliefs about the justification of scientific knowledge (an aspect of the beliefs on the nature of knowing science) were significantly correlated with their reasoning quality; the extent and the richness of students’ cognitive structures as well as their usage of the information processing mode, ‘comparing,’ were positively correlated with their reasoning quality. A series of regression analyses further confirmed that students’ use of the information processing mode, ‘comparing,’ was the most significant factor for predicting reasoning quality, while their beliefs regarding the justification of scientific knowledge was the other important predictor.  相似文献   

18.
We investigated how Chinese physics teachers structured classroom discourse to support the cognitive and social aspects of inquiry-based science learning. Regarding the cognitive aspect, we examined to what extent the cognitive processes underlying the scientific skills and the disciplinary reasoning behind the content knowledge were taught. Regarding the social aspect, we examined how classroom discourse supported student learning in terms of students' opportunities to talk and interaction patterns. Our participants were 17 physics teachers who were actively engaged in teacher education programs in universities and professional development programs in local school districts. We analyzed one lesson video from each participating teacher. The results suggest both promises and challenges. Regarding the cognitive aspect of inquiry, the teachers in general recognized the importance of teaching the cognitive processes and disciplinary reasoning. However, they were less likely to address common intuitive ideas about science concepts and principles. Regarding the social aspect of inquiry, the teachers frequently interacted with students in class. However, it appeared that facilitating conversations among students and prompting students to talk about their own ideas are challenging. We discuss the implications of these findings for teacher education programs and professional development programs in China.  相似文献   

19.
This study examined the extent to which reading and arithmetic skills show covariation at Grade 1 and at Grade 7, to what extent this covariation is time-invariant or time-specific, and to what extent different antecedents will predict these time-invariant and time-specific portions of the covariation. The reading and arithmetic skills of a total of 1335 Finnish children were assessed at the end of Grade 1 and then again at the end of Grade 7. Phonological awareness, letter knowledge, rapid automatized naming (RAN), counting, and parental education levels were measured in kindergarten; working memory at Grade 1 and nonverbal reasoning at Grade 3. The results showed that reading and arithmetic had a substantial amount of covariation at grades 1 and 7, and that most of the covariation between these grades was time-invariant and could be predicted by RAN, counting, letter knowledge, working memory, and nonverbal reasoning. The time-specific portion of the covariation between reading and arithmetic in Grade 1 was predicted by phonological awareness, letter knowledge, and counting; while time-specific covariation in Grade 7 was predicted by parental education level and nonverbal reasoning.  相似文献   

20.
The ability to build arguments is a crucial skill and a central educational goal in all school subjects including science as it enables students to formulate reasoned opinions and thus to cope with the increasing complexity of knowledge. In the present cross-sectional study, we examined the domain-specificity of argumentative writing in science by comparing it with a rather general type of argumentation as promoted in first-language education and with formal reasoning to gain insight into different forms of argumentation on theoretical and empirical levels. Using a paper-and-pencil test, we analyzed written argumentations and the reasoning abilities of 3,274 Grade-10 students in German secondary schools. Correlation and multiple regression analyses as well as a qualitative analysis of students' answers to a subset of tasks in the domains of science and first-language education were conducted. Results showed moderate relations between argumentation in science, argumentation in first-language education, and reasoning. Half of the variance in argumentation in science was explained by individual differences in argumentation in first-language education and reasoning. Furthermore, the examination of written arguments revealed differences, for example, in students' weighing of pros and cons. We assume that the familiarity of the underlying scientific information may play an essential role in the argumentation process and posit that it needs to be investigated in more detail. Overall, the study indicates that investigating the argumentational abilities of learners in first-language education and reasoning abilities can help to shed light on the domain-specificity of argumentation in science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号