首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Drawing from the phenomenographic perspective, an exploratory study investigated Chinese teacher educators’ conceptions of teaching Nature of Science (NOS) to pre-service science teachers through semi-structured interviews. Five key dimensions emerged from the data. This paper focuses on the dimension, NOS content to be taught to pre-service science teachers. A total of 20 NOS elements were considered by the Chinese science teacher educators to be important ideas to be taught. It was also found that among these educators, whether focusing on the classical or contemporary NOS elements in NOS instruction was a prominent controversy. After explaining the criteria for differentiating between classical and contemporary NOS elements, this paper reports the specific NOS elements suggested by Chinese science teacher educators in this study. Afterward, it describes how all educators in this study were categorized in term of NOS content taught by them to pre-service science teachers. In the end, it discusses three factors influencing the decision on NOS content to be taught, i.e., view of the concept of NOS itself, vision of teaching NOS, and belief in general philosophy.  相似文献   

2.
3.
Science teaching and learning require knowledge about how learning takes place (cognition) and how learners interact with their surroundings (affective and sociocultural factors). The study reported on focussed on learning for understanding of Newton’s second law of motion from a cognitive perspective that takes social factors into account. A cognitive refinement instructional approach (CRIA) was used to organise and sequence learning activities, while students were engaged through inquiry and group work. Students’ real-life experiences were used as starting point of the learning sequence. The efficiency of the sequence was determined with the aid of the Force Concept Inventory (FCI) and complemented with the students’ reflections on the sequence, showing their epistemological preferences. The results indicated that a CRIA aided in constructing more coherent scientific knowledge and enhanced understanding, while reducing misconceptions on the topic. In their reflections, the students acknowledged that experiential and experimental evidence, as well as guided formation of a scientific explanatory framework, are foundational for a deeper understanding of the challenging topic.  相似文献   

4.
This paper is subdivided into two sections: In Part I empirical results of students epistemological conceptions of laws, hypotheses, theories, and models are presented as well as their ideas of the pathway of scientific discovery. These results are discussed in relation to research results of different recent publications. In Part II an outline and analysis of a two-year program for explicitly teaching epistemology in a physics course (grade 11-13) is given.  相似文献   

5.
Summaries

English

Attitude statements, mostly concerned with the social implications of science, were administered to 2100 pupils of age 14+. The sample was divided into the top 25oO ('GCE') and the next 30‐40oo ('REST') of the ability range and further divided by sex and by coeducation and single‐sex education.

Factor analysis yielded measures of five independent attitudes to (1) science as a school subject (SUBATT) and to its implications (SOCATT) regarding (2) aesthetic/humanitarian issues; (3) practical benefits (4) value to the state for money invested (S) the activities of scientists. The attitude scores were correlated with the biology, chemistry and physics choices made at this age and with liking for these subjects’ teachers. There were 26/60 significant but low overall correlations with physics and chemistry choices, but only 5/30 for biology. A further 26 significant correlations arose either at high or low teacher liking, the former predominating with boys and the latter with girls.

A Kruskal‐Wallis analysis indicated that some attitudes in the ‘GCE’ group were unaffected by the school attended and possibly derived from the media. Adverse attitudes to the social implications of science may be a factor in the swing away from physical science and technology.  相似文献   

6.
Study provides qualitative analysis of data that answers the following research question: how college science faculty teach science and NOS and incorporate aspects of NOS and the history of science into their undergraduate courses? Study concentrates on four cases and more specifically on three introductory science classes and on four instructors who taught those courses. These instructors were chosen as case studies to explore in greater detail what occurs inside introductory science courses in one particular higher institution in the Northeastern United States. Participants’ teaching styles are presented through a combined and detailed presentation of interview data and classroom observations supported with examples from their classroom activities. Constant comparative approach was used in the process of organizing and analyzing data. Findings revealed that participants preferred to use the traditional teacher-centered lecturing as their teaching style and whose main concern was to cover more content, develop the problem solving skills of their students, and who wanted to teach the fundamental principles of their subjects without paying special importance to the NOS aspects. The study also revealed that other variables of teaching science, such as large class size, lack of management and organizational skills, teaching experience, and instructors’ concerns for students’ abilities and motivation are more important for these scientists then teaching for understanding of NOS.  相似文献   

7.
The major science education reform documents emphasize the need for K-12 students to have a robust understanding of nature of science (NOS), and inservice teachers consequently need to develop their NOS teaching repertoires. This study investigated the extent to which science teachers were willing to adopt new strategies and activities for teaching NOS in their classrooms. The participants were 36 elementary, middle, and high school teachers who were completing a year-long physical science professional development (PD) that included NOS instruction. Data sources consisted of surveys (teachers’ NOS views, teaching practices), collected work, and responses to post-PD follow-up questions. The professional development course was successful in that teachers incorporated many of these strategies and activities into their own practice. This study also endeavored to identify factors that facilitated the adoption of these new approaches to teaching NOS. While personal characteristics such as pre- or post-PD NOS understandings, NOS gains, and grade level taught were not related to the number of NOS activities incorporated, teachers from suburban and rural schools were significantly more likely to implement NOS activities.  相似文献   

8.
Drawing from the phenomenographic perspective, this study investigated Chinese science teacher educators’ conceptions of teaching nature of science (NOS) to preservice science teachers through two semi-structured interviews. The subjects were twenty-four science teacher educators in the developed regions in China. Five key dimensions emerged from the data on the conceptions of teaching NOS, including value of teaching NOS, NOS content to be taught, incorporation of NOS instruction in courses, learning of NOS, and role of the teacher. While some of these dimensions share much similarity with those reported in the studies of conceptions of teaching in general, some are distinctively different, which is embedded in some unique features of teaching NOS to preservice science teachers. These key dimensions can constitute the valuable components of the module or course to train science teachers or teacher educators to teach NOS, provide a framework to interpret the practice of teaching NOS, as well as lay a foundation for probing the conceptions of teaching NOS of other groups of subjects (e.g., school teachers’ conceptions of teaching NOS) or in other contexts (e.g., teaching NOS to in-service teacher).  相似文献   

9.
10.
This study utilized pre-service teachers’ philosophy statements to connect their beliefs for science teaching with inquiry-based constructivist classroom practice. The major findings of this study suggested that before entering the classroom prospective teachers are strongly aligned with inquiry-based, constructivist-based theories, and describe teaching science as a process approach. However, after entering public classrooms the teacher candidates often abandoned those notions of constructivist, inquiry-based science in favor of a more traditional approach to science instruction. This study addresses a method to engage prospective teachers in designing inquiry-based science pedagogy as well as developing their professional pedagogical confidence.  相似文献   

11.
12.
The purpose of this study was to develop and validate an online contextualized test for assessing students’ understanding of epistemic knowledge of science. In addition, how students’ understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was also explored. The participants were 489 senior high school students (244 males and 245 females) from eight different schools in Taiwan. Based on the result of an extensive literature review, we first identified six factors of epistemic knowledge of science, such as status of scientific knowledge, the nature of scientific enterprise, measurement in science, and so on. An online test was then created for assessing students’ understanding of the epistemic knowledge of science. Also, a learner-factor survey was developed by adopting previous PISA survey items to measure the abovementioned learner factors. The results of this study show that; (1) by factor analysis, the six factors of epistemic knowledge of science could be grouped into two dimensions which reflect the nature of scientific knowledge and knowing in science, respectively; (2) there was a gender difference in the participants’ understanding of the epistemic knowledge of science; and (3) students’ interest in science learning and the time spent on science learning were positively correlated to their understanding of the epistemic knowledge of science.  相似文献   

13.
The nature of science (NOS) has become a central goal of science education in many countries. This study sought an understanding of the extent to which a nature of science course (NOSC), designed according to the conceptualization of pedagogical content knowledge (PCK) for teaching nature of science (NOS), affects in-service science teachers’ understanding and learning of NOS, and their orientations towards teaching it. A qualitative research approach was employed as a research methodology, drawing upon pre- and post-instruction NOS questionnaires, field notes, and in-service teachers’ weekly journal entries and assignments. Open-ended NOS questionnaires, used to assess participants’ understandings of NOS, were analysed and categorized as either informed, partially informed and naive. Other qualitative data were analysed through an inductive process to identify ways in-service teachers engaged and learned in the NOSC. The results indicate that at the beginning of the course, a majority of the in-service science teachers held naive understandings of NOS, particularly with respect to the definition of science, scientific inquiry, and differences between laws and theories. They viewed implicit project-based science and science process skills as goals of NOS instruction. By engaging in the course, the in-service science teachers developed an understanding of NOS and orientations to teaching NOS based on various elements, especially reflective and explicit instruction, role modelling, and content- and non-content embedded instruction. The aim of this study is to help science teacher educators, consider how to support and develop science teachers’ understandings of NOS while being mindful of PCK for NOS, and develop methods for teaching NOS frameworks.  相似文献   

14.
The study on Traditional Chinese Medicine (TCM)by the technology and method of thermal science is a new cut-in point in interdisciplinary science, and its purpose is to study the tongue inspection in TCM from the view of the bio-heat transfer theory. In this paper human tongues were studied with the infrared thermal imaging technology. And the characteristic relationship between temperature distribution and age, tongue color as well as infrared thermal tongue image concerning the characteristic of viscera was analyzed by the experimental data, which confirms that the change in temperature distribution in different positions of the tongue is related to the diseases of different internal organs of the body. From a series of invasive experiments in animals, the blood perfusion rate was measured with the equipment of CBI-8000 Doppler Blood Flow Meter and MP-100 Physiologic Research System for the first time and the characteristic relationship curve between the temperature on the surface of the tongue and the blood perfusion rate was obtained. From the experiments the temperature on the surface of the tongue reflects objectively the tongue color which is influenced by the blood perfusion rate. This will help to develop some new cognition in the theory of TCM.  相似文献   

15.
Science teachers’ perceptions of the type of subject that appeals to 14 year old pupils were investigated using bi‐polar semantic differential rating scales. It was found that science teachers believe that boys and girls prefer significantly different subject characteristics. Teachers’ beliefs about the subject characteristics preferred by boys are closer to the perceived characteristics of school science, as judged on the same semantic differential scales, than is the case for girls. Teachers perceive the characteristics of school science to be much less attractive to girls. A comparison between the responses from groups of science teachers and pupils revealed that teachers believe that boys’ and girls’ preferences for subject characteristics are more dissimilar than they actually are. Girls’ preferences are closer to those of boys and to the characteristics associated with school science than teachers realize.  相似文献   

16.
This paper describes Spanish science teachers’ thinking about issues concerning the nature of science (NOS) and the relationships connecting science, technology, and society (STS). The sample consisted of 774 in-service and pre-service teachers. The participants responded to a selection of items from the Questionnaire of Opinions on Science, Technology & Society in a multiple response model. These data were processed to generate the invariant indices that are used as the bases for subsequent quantitative and qualitative analyses. The overall results reflect moderately informed conceptions, and a detailed analysis by items, categories, and positions reveals a range of positive and negative conceptions about the topics of NOS dealt with in the questionnaire items. The implications of the findings for teaching and teacher training on the themes of NOS are discussed.  相似文献   

17.
18.
19.
A characterization of the modelling process in science is proposed for science education, based on Mario Bunge’s ideas about the construction of models in science. Galileo’s Dialogues are analysed as a potentially fruitful starting point to implement strategies aimed at modelling in the classroom in the light of that proposal. It is argued that a modelling process for science education can be conceived as the evolution from phenomenological approaches towards more representational ones, emphasizing the role of abstraction and idealization in model construction. The shift of reference of theories—from sensible objects to conceptual objects—and the black-box models construction process, which are both explicitly presented features in Galileo’s Dialogues, are indicated as highly relevant aspects for modelling in science education.  相似文献   

20.
The nature of science (NOS) is a primary goal in school science. Most teachers are not well-prepared for teaching NOS, but a sophisticated and in-depth understanding of NOS is necessary for effective teaching. Some authors emphasize the need for teaching NOS in context. Species, a central concept in biology, is proposed in this article as a concrete example of a means for achieving increased understanding of NOS. Although species are commonly presented in textbooks as fixed entities with a single definition, the concept of species is a highly discussed one in the science and the philosophy of biology. A multitude of species concepts exist, reflecting both the views and interests of researchers and their utility in different organism groups. The present study serves to address the following questions: How do textbooks in Norwegian primary and lower secondary schools present the concept of species? Can inquiries into the concept of “species” serve to highlight aspects of NOS? A review of the available literature on species and species concepts in school is also performed. In the schoolbooks, the biological species concept is commonly used as the main definition, whereas the morphological species concept is represented by additional remarks of similarity. The potential and pitfalls of using the species concept for teaching NOS are discussed, with NOS being discussed both as a family resemblance concept and as a consensus list. Teacher education is proposed as a starting point for inducing a more sophisticated view of biology into schools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号