首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The scientific competencies advocated by the Programme for International Student Assessment (PISA) focus on the abilities needed in students' adult lives. This study investigated how such scientific competencies could be improved by using online argumentation. One hundred and thirty-eight 8th grade high school students took part in the study, with 69 in the experimental group and 69 in the control group. A quasi-experimental design was adopted and qualitative and quantitative analyses were used. An online argumentation system served as an aid for argumentation instruction and activities among experimental group students during the experiment. The results showed that using online argumentation could improve the students' scores for the PISA scientific competencies. The experimental group students outperformed their counterparts in terms of overall mean scores for the scientific competencies. On the one hand, the individual competencies of ‘using scientific evidence’ and ‘identifying scientific issues’ of the experimental group were higher than those of the control group. On the other hand, the experimental group students did not outperform their counterparts in terms of competency in ‘explaining phenomena scientifically’. Using an online environment to complement argumentation instruction and organizing argumentation activities focused on related topics may be a potential direction to consider for improving students’ PISA scientific competencies.  相似文献   

2.
This study investigated the effects of students’ prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students in each class were divided into three groups according to their level of prior science knowledge; they then took either our social- or individual-based online science learning program. The results show that students in the social online argumentation group performed better in argumentation and online argumentation learning. Qualitative analysis indicated that the students’ social interactions benefited the co-construction of sound arguments and the accurate understanding of science concepts. In constructing arguments, students in the individual online argumentation group were limited to knowledge recall and self-reflection. High prior-knowledge students significantly outperformed low prior-knowledge students in all three aspects of science learning. However, the difference in inquiry and argumentation performance between low and high prior-knowledge students decreased with the progression of online learning topics.  相似文献   

3.
The purpose of the study was two-fold: to (a) investigate the influence of explicit nature of science (NOS) and explicit argumentation instruction in the context of a socioscientific issue on the argumentation skills and NOS understandings of students, and (b) explore the transfer of students' NOS understandings and argumentation skills learned in one socioscientific context into other similar contexts (familiar and unfamiliar). Participants were a total of 121 seventh grade students from two schools. The treatment involved an eight-week unit about the water usage and safety, which was taught by two teachers for two intact groups (Treatments I and II). Explicit NOS instruction was integrated for all groups. However, only the Treatment I groups had the additional explicit argumentation instruction. Participants were pre- and post-tested using an open-ended questionnaire and interviews about two socioscientific issues to assess their learning and transfer of argumentation skills and NOS understandings. Results showed improvements in the learning of argumentation practice and NOS understandings for Treatment I group participants. Similarly, there were improvements in the learning and transfer of NOS understandings for Treatment II group participants with only some improvements for the argumentation practice. Further, some of the Treatment I group participants made connections to argumentation when explicating their NOS understandings by the end of the study. Findings were discussed in light of classroom practice that utilizes an explicit approach, contextual approach, as well as an approach that integrates NOS and argumentation simultaneously.  相似文献   

4.
On several levels it can be said that the act of modelling in science is inherently an argumentative act. That is, in virtually all aspects of modelling, from developing a question to judging between competing models that might answer that question, an individual is engaged in persuasive acts. Those acts may be private or public. They may be mental, written or oral, but they are about judging ideas and making sense of them; convincing oneself or others that the ideas and ways of looking at and explaining a phenomenon are useful. These acts are what scientists find exciting. They are what make science intellectually interesting and challenging. Inviting students into this practice is one way to help them learn both the content and process of science. This paper introduces a framework that is attentive to the research on how people learn while simultaneously pushing for curriculum and instruction that engages students in elements of the practice of science. We explore how this framework can be used to foster argumentation by describing the theoretical underpinnings of the framework and using classroom examples to illustrate the utility of the framework for promoting argumentation.  相似文献   

5.
Researchers have emphasized the importance of promoting argumentation in science classrooms for various reasons. However, the study of argumentation is still a young field and more research needs to be carried out on the tools and pedagogical strategies that can assist teachers and students in both the construction and evaluation of scientific arguments. Thus, the aim of this study was to evaluate the impact of argumentation on students’ conceptual learning in dynamics. True-experimental design using quantitative research methods was carried out for the study. The participants of the study were tenth graders studying in two classes in an urban all-girls school. There were 26 female students in each class. Five argumentations promoted in the different contexts were embedded through the dynamics unit over a 10-week duration. The study concludes that engaging in the argumentative process that involves making claims, using data to support these claims, warranting the claims with scientific evidence, and using backings, rebuttals, and qualifiers to further support the reasoning, reinforces students’ understanding of science, and promotes conceptual change. The results suggest that argumentation should be employed during instruction as a way to enable conceptual learning.  相似文献   

6.
Abstract

Even though there is wide agreement on the importance of argumentation in modern societies, only a minority of students in secondary and postsecondary education receive direct and explicit instruction in argumentation. The present study describes the design and results of a test that was used to measure everyday argumentation skills of 186 undergraduate students in Bogotá (Colombia), before and after they completed a one-semester course in logic with emphasis in argumentation. Given that the students came from a variety of academic and socioeconomic backgrounds, this sample allowed us to estimate the potential influence of student-related characteristics on the effectiveness of instruction. On average, students showed significant improvement (d = 0.62), independently of their academic and socioeconomic characteristics. This suggests that receiving this kind of instruction can be beneficial for a wide range of students.  相似文献   

7.
8.
本文旨在为构建一种以论证型式为基础的方法,用以帮助非形式逻辑的学生分析自然语言对话的文本,并识别出其中所出现的常见论证类型.他们在这一过程中时常会错误地辨识论证类型,而本文将表明所发展的这种方法对于学习非形式逻辑的学生们是非常有帮助的.另外,对于那些可用于构建一种有用的论证识别方法的理论资源,本文对其最新发展动态进行了考察,并且也概览了当前人工智能领域中所发展的自动论证挖掘工具.  相似文献   

9.
This article describes an effort to explore and enhance argumentation skills of Taiwanese grade 6 students through instruction in socioscientific issues. An experienced elementary school teacher was given 8 months of personalized instruction on argumentation skills and socioscientific issues, then subsequently implemented a 17-h classroom unit on the establishment of Ma-Guo National Park. His students learned to establish claims and warrants, construct counterarguments, offer supportive arguments, and provide evidence for each one. Data consisted of student responses to questionnaires and individual follow-up interviews. A multiple regression analysis revealed that success in learning argumentation skills was not substantially related to pre-instruction argumentation skills, but significantly related to the student ability levels. High-ability students were significantly better than low-ability students at generating complete arguments. Most students elaborated their arguments, and more high-ability students offered rebuttals after instruction. However, even these high achievers did not completely understand the meaning of evidence and often misused supplementary warrants as evidence.  相似文献   

10.
This study investigated the effects of a science and society intervention on elementary school students’ argumentation skills and their attitudes toward science. One hundred and eleven fifth grade students volunteered as an experimental group to join a 12-week intervention; another 107 sixth grade students volunteered to be the comparison group. All participants completed the Student Questionnaire at the beginning and end of this study. Observation and interview results were used to triangulate and consolidate the quantitative findings. The data showed that after the intervention, the quality of the experimental group students’ arguments and their attitudes toward science were significantly higher than their comparison group counterparts. In addition, the experimental group boys made significantly greater progress in the quality of their argumentation from the pretest to posttest than the girls; and low achievers made the most significant progress in their attitudes toward science and quality of argumentation. Interviews and observations indicated that their understandings of explanation and argumentation changed over the intervention. This indicated that a science and society intervention can enhance both the ability of students to develop strong arguments and their attitudes toward science.  相似文献   

11.
Scientific argumentation is one of the core practices for teachers to implement in science classrooms. We developed a computer-based formative assessment to support students’ construction and revision of scientific arguments. The assessment is built upon automated scoring of students’ arguments and provides feedback to students and teachers. Preliminary validity evidence was collected in this study to support the use of automated scoring in this formative assessment. The results showed satisfactory psychometric properties related to this formative assessment. The automated scores showed satisfactory agreement with human scores, but small discrepancies still existed. Automated scores and feedback encouraged students to revise their answers. Students’ scientific argumentation skills improved during the revision process. These findings provided preliminary evident to support the use of automated scoring in the formative assessment to diagnose and enhance students’ argumentation skills in the context of climate change in secondary school science classrooms.  相似文献   

12.
Engaging in argumentation from evidence is challenging for most middle school students. We report the design of a media-based mentoring system to support middle school students in engaging in argumentation in the context of a game-infused science curriculum. Our design emphasizes learners apprenticing with college student mentors around the socio-scientific inquiry of a designed video game. We report the results of a mixed-methods study examining the use of this media-based mentoring system with students ages 11 through 14. We observed that the discourse of groups of students that engaged with the game-infused science curriculum while interacting with college student mentors via a social media platform demonstrated statistically significant higher ratings of cognitive, epistemic, and social aspects of argumentation than groups of students that engaged with the social media platform and game-infused science curriculum without mentors. We further explored the differences between the Discourses of the mentored and non-mentored groups. This analysis showed that students in the mentored groups were invited, guided, and socialized into roles of greater agency than students in the non-mentored groups. This increased agency might explain why mentored groups demonstrated higher levels of scientific argumentation than non-mentored groups. Based on our analyses, we argue that media-based mentoring may be designed around a video game to support middle school students in engaging in argumentation from evidence.  相似文献   

13.
The purpose of this study was to use drama as a springboard for promoting argumentation among 91 first-semester undergraduate medical students (56 females and 35 males, 16–30 years old) in Colombia during a complete teaching–learning sequence (TLS) supervised by the same teacher. The drama used was the play Should’ve, written by Nobel laureate Roald Hoffmann. The data was derived from students’ written responses, audio and video recordings, and written field notes. This investigation provides evidence that an approach combining drama and argumentation could increase students’ awareness of the relevance of ethics in science as one of the features of science (FOS). The findings show that the play Should’ve can be useful for promoting students’ argumentation and is also appropriate for medical students. Future studies could include other science disciplines (e.g., astronomy, biology, chemistry, earth science, ecology, physics); students of other ages; and other plays and experiments in other parts of the world.  相似文献   

14.
15.
The issue of mathematics underachievement among students has been an increasing international concern over the last few decades. Research suggests that academic success can be achieved by focusing on both the individual and social aspects of learning. Within the area of mathematics education, the development of metacognitive skills and the incorporation of discourse in classroom instruction has resulted in students having deeper conceptual understandings of the content and increased mathematical achievement. However, studies in this field tend to focus on the effects of these practices separately, making research that seeks to harness the potential of both quite rare. This paper reports on a study that was aimed at addressing this gap in the literature by examining the effects of writing and argumentation on achievement. Two hundred and eleven students and five teachers participated in this multimethod study that investigated the effects of three treatment conditions on mathematical achievement. These conditions were writing alone, argumentation alone, and writing and argumentation combined. Analysis of covariance revealed significant differences between the groups, and tests of the contrasts showed that students who engaged in both argumentation and writing had greater knowledge gains than students who engaged in argumentation alone or neither activity.  相似文献   

16.
In this review essay I respond to issues raised in Mijung Kim and Wolff-Michael Roth’s paper titled “Dialogical argumentation in elementary science classrooms”, which presents a study dealing with dialogical argumentation in early elementary school classrooms. Since there is very limited research on lower primary school students’ argumentation in school science, their paper makes a contribution to research on children’s argumentation skills. In this response, I focus on two main issues to extend the discussion in Kim and Roth’s paper: (a) methodological issues including conducting a quantitative study on children’s argumentation levels and focusing on children’s written argumentation in addition to their dialogical argumentation, and (b) investigating children’s conceptual understanding along with their argumentation levels. Kim and Roth emphasize the difficulty in determining the level of children’s argumentation through the Toulmin’s Argument Pattern and lack of high level arguments by children due to their difficulties in writing texts. Regarding these methodological issues, I suggest designing quantitative research on coding children’s argument levels because such research could potentially provide important findings on children’s argumentation. Furthermore, I discuss alternative written products including posters, figures, or pictures generated by children in order to trace children’s arguments, and finally articulating argumentation and conceptual understanding of children.  相似文献   

17.
Since the late 1990s, there has been consensus among educational researchers that argumentation should play a central role in science education. Although there has been extensive relevant research, it is not clear enough how oral argumentation spontaneously occurs in science teaching. This is particularly important with regard to the empirical evidence suggesting the effect of discussion of contradictory views on scientific learning. In order to contribute to the research on argumentation in science teaching, we conducted a study that aims to sketch a panoramic view of the uses of oral argumentation in Chilean middle-school science teaching. A total of 153 videotaped science lessons were observed, involving students aged 10–11 and 12–13. Whole-class argumentative discourse was analysed as a function of thematic episodes and teachers' and students' utterances. Results suggest that argumentative discourse in which contradictory points of view are discussed is scarce but when it occurs it does so predominantly within discourse among students. On the contrary, argumentation aimed at justifying points of view is widely used, even more so when students are older.  相似文献   

18.
Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during instruction differently for topics that rely on experimental or historical modes of inquiry. Four experienced high-school science teachers were observed daily during instructional units for both experimental and historical science topics. The main data sources include classroom observations and teacher interviews. The arguments were analyzed using Toulmin's argumentation pattern revealing specific patterns of arguments in teaching topics relying on these 2 modes of scientific inquiry. The teachers presented arguments to their students that were rather simple in structure but relatively authentic to the 2 different modes. The teachers used far more evidence in teaching topics based on historical inquiry than topics based on experimental inquiry. However, the differences were implicit in their teaching. Furthermore, their arguments did not portray the dynamic nature of science. Very few rebuttals or qualifiers were provided as the teachers were presenting their claims as if the data led straightforward to the claim. Implications for classroom practice and research are discussed.  相似文献   

19.
Whereas there are some studies presenting the effects of argumentation on science knowledge development, there is still a need for research discovering the interrelationship between knowledge and argumentation. The purpose of this research was to investigate a possible relationship between students?? engagement in argumentation and their conceptual knowledge. A case study design was carried out for this research. The participants of the study were tenth graders studying in an urban all-girls school. There were 5 argumentations promoted in different contexts which were embedded through the dynamics chapter, for a 10-week period. Some of the conclusions drawn from the study are as follows: First, students?? quantity and quality of arguments improve through time as they get more involved with argumentation. Second, students?? knowledge does not improve instantly when they are involved with argumentation activities, that is, knowledge development in an argumentation process takes time. Third, students?? prior knowledge affects their participation in argumentation. Last, there are some patterns that indicate the relationship between argumentation and knowledge. However, students?? arguments and their knowledge do not develop at the same time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号