首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
目的:研究运动对体液调节激素产生的影响,以及激素的变化在运动中作用。方法:10名身体健康的男子(22±2岁)参加持续时间为1h强度为60%最大摄氧量的运动。分别在运动前,运动中及休息期间测定血浆心钠素(Atrial Natriuretic Peptides,ANP)、精氨酸加压素(Arginine Vasopressin,AVP)、醛固酮(Aldosterone,ALD)和血浆容量的变化(PV)。结果:血浆ALD、AVP和ANP在运动中明显升高,提示运动对体液调节激素的影响非常明显。运动中血浆容量明显下降,且与ALD、AVP具有高度相关性,提示运动中激素对维持血浆容量平衡起到非常重要的作用。结论: 运动对体液调节激素产生重要的影响,表现为运动中ALD、AVP和ANP明显增高;ALD、AVP是非常重要的体液调节激素,在运动中对维持体液平衡起到重要的作用。  相似文献   

2.
目的:研究运动中人体日周期节律变化对体液调节激素及电解质、血浆容量产生的影响.方法:16名身体健康的男性大学生参加二次、相隔一周的功率自行车运动实验(分别在早晨5:00和下午5:00),受试者以心率140次/min运动1 h,之后休息1 h.分别在运动前、中和休息期间测定血浆心钠素(ANP)、醛固酮(ALD)、精氨酸加压素(AVP)、血红蛋白(Hb)、红细胞压积(Hct),血、尿渗透压(Osm)和血、尿钠(Na )、钾(K )离子等,同时测定血浆容量(△PV)和体重(△W)的变化.结果:运动前ANP(早晨:42.1±3.2,下午:33.9±1.5 Pg/ml,P=0.0096)、ALD(早晨:92±10,下午:57±5 Pg/ml,P=0.0005)和AVP(早晨:25.5±0.5,下午:22.7±0.8Pg/ml,P=0.0013)早晨比下午高,呈现昼夜节律变化,它们在运动中明显升高,而且早晨和下午的节律性差异在运动中仍然明显.在早晨运动比下午运动导致更多的血浆容量的减少(早晨:-7.2±3%,下午:-4.5±2%,P=0.02)和体重的下降(早晨:1.03±0.2,下午:0.87±0.1,P=0.0235).结论:①体液调节激素呈现早晨高下午低的昼夜节律变化,这种节律变化在运动中仍然明显,对维持体液平衡起到重要的作用;②运动导致的脱水在早晨比在下午更严重,提示在早晨不适宜从事大负荷运动、训练,可能导致严重的脱水.  相似文献   

3.
目的:对20名平原受试者进行为期3周递增性低氧训练,测试其低氧训练前后模拟海拔4 800m(PO2为10.4%~10.8%)时血清抗利尿激素(AVP)和醛固酮(ALD)的变化,并结合AMS评分、心率和血压,探讨递增性低氧训练对模拟高海拔低氧环境的适应效果。方法:阶段1:受试者于模拟海拔4 800m低氧环境中急性暴露6 h,以60rpm、80 W的定量负荷仰卧蹬车20 min,LLS量表评价AMS,测试低氧暴露过程中的HR和BP,低氧结束时的血清AVP和ALD;阶段2:进行3周递增性低氧训练后,再重复阶段1的测试。结果:低训后模拟海拔4 800m低氧环境下,AMS评分大于等于3分的人数由9人降到2人;运动时的心率明显低于低训前;急性低氧暴露6h,血清AVP和ALD均较常氧值显著下降;低训3周后再次低氧暴露,血清AVP和ALD与常氧值相比较,均无显著差异。结论:递增性低氧训练有助于增强机体对低氧的习服。  相似文献   

4.
目的:依据人体生物节律,探讨择时有氧运动对人体神经体液调节激素的影响。方法:20名健康青年男性以最大心率80%进行有氧运动,运动形式为蹬功率自行车,两次择时运动时间为上午6:00-7:00和下午16:00-17:00,随后的1小时为恢复期,以同一时间安静时为对照,从开始运动至恢复期结束,每30min取血一次,测定血液中皮质醇、NE、ANP和ALD的含量。结果:安静时血液中皮质醇、ANP和ALD水平上午高于下午,NE水平上午低于下午。运动时,血液皮质醇、NE、ANP和ALD水平均显著升高。上午运动与下午运动比较,皮质醇、ANP和ALD水平上午高于下午,NE水平下午高于上午。结论:机体皮质醇、NE、ANP和ALD水平均呈近日节律变化的特征。有氧运动时,皮质醇、NE、ANP和ALD水平均升高,并在运动后恢复期下降。上午有氧运动与下午有氧运动时,皮质醇、NE、ANP和ALD水平依然存在节律性变化。  相似文献   

5.
竞走     
G821.147 20014426运动对优秀竞走运动员尿电解质排泄的影响[刊,中,I]/王丽萍,胡继明,吴传京//中国运动医学杂志.-2000.-19(3).-324-325表3参7(SML)竞走//优秀运动员//训练//尿液分析//电解质//排泄//影响选取5名优秀竞走运动员,研究运动对尿电解质排泄的影响。结果表明,运动后尿钾、磷排泄量增加,而尿钠排泄量有显著的下降,钙与镁的排泄量则无显著变化。提示运动员运动后补充电解质十分必要。  相似文献   

6.
体育活动的核心是肌肉活动,而指挥和调节肌肉活动的是中枢神经系统。人在运动中一旦出现疲劳后,在神经系统也会有某些反应,甚至出现症状和体征等。据文献报道,对运动性疲劳及其程度和恢复情况可以通过某些方法来测定,如心理学的,神经系统的(包括脑电以及肌电),力量素质、血压、脉搏、体重、生物化学(血、尿、唾液)等。但是这些指标仍有一定的局限性,故新的方法一直在探索中。本文试验试图用闪烁值的测定,在体操运动员训练或比赛期间观察中枢神经的稳定性、大脑的兴奋水平及疲劳与运动能  相似文献   

7.
游泳是全身性运动。运动员在持续训练期间,由于全身肌肉的激烈收缩,会导致体内水、电解质以及糖、脂肪、蛋白质代谢的变化。测定尿液内电解质和蛋自质代谢产物的浓度可以间接地反映体内的代谢变化。本文就游泳运动员训练前后尿液分析的结果报告如下。材料和方法21例男性游泳运动员在水温为26.5~27℃的室内游泳池正规训练3小时,游程6000m,训练前后留中段尿测定尿钾、钠、钙、肌酸、肌酐、尿素、糖、尿胆元及尿常  相似文献   

8.
耐久性运动导致大鼠肾脏组织自由基代谢动态变化   总被引:4,自引:0,他引:4  
测定大鼠在进行耐久性运动前及运动后即刻、2h、4h及6h肾脏组织脂质过氧化水平(LPO)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH Px)活性和尿总蛋白(TP)排出率变化表明,大鼠肾脏组织在运动结束后即刻LPO和尿TP排出率显著升高(P<0 01,P<0 01),SOD活性升高不显著(P>0 05)和GSH Px活性显著下降(P<0 05)。指出大鼠肾脏组织在运动结束后即刻自由基作用明显加强。从其在运动结束后4次测得肾脏组织LPO、SOD、GSH Px和尿TP排出率指标所形成的动态变化看,耐久性运动可以提高大鼠肾脏组织抗氧化酶活性,从而清除运动时产生的大量自由基,提高大鼠肾脏组织对抗自由基的能力,肾脏组织自由基作用的加强与尿TP排出率的升高具有高度相关性。  相似文献   

9.
瘦素及其受体与运动   总被引:6,自引:0,他引:6  
瘦素 (Leptin)是肥胖基因 (obgene)的蛋白表达产物 ,其主要作用是与其受体 (leptinreceptor,orOB R)结合进而减少体脂 ,控制体重和调节机体能量代谢。运动训练可影响obmRNA表达和血Leptin浓度。体脂的改变亦可明显影响肥胖患者的瘦素及瘦素受体水平。  相似文献   

10.
分析运动训练对运动员体温、水代谢、电解质代谢的影响,以及运动训练过程中运动员水盐代谢的激素调节机制.认为:运动训练使运动员机体排汗增加,水及电解质的大量丢失导致机体水盐代谢的紊乱;运动时水盐代谢的神经体液调节具有一定的滞后性及局限性,合理补液可缓解运动热应激产生的不利影响,促进疲劳消除.  相似文献   

11.
Fluids and electrolytes (sodium) are consumed by athletes, or recommended to athletes, for a number of reasons, before, during, and after exercise. These reasons are generally to sustain total body water, as deficits (hypohydration) will increase cardiovascular and thermal strain and degrade aerobic performance. Vigorous exercise and warm/hot weather induce sweat production, which contains both water and electrolytes. Daily water (4-10 L) and sodium (3500-7000 mg) losses in active athletes during hot weather exposure can induce water and electrolyte deficits. Both water and sodium need to be replaced to re-establish "normal" total body water (euhydration). This replacement can be by normal eating and drinking practices if there is no urgency for recovery. But if rapid recovery (<24 h) is desired or severe hypohydration (>5% body mass) is encountered, aggressive drinking of fluids and consuming electrolytes should be encouraged to facilitate recovery for subsequent competition.  相似文献   

12.
13.
Body mass changes during ultra-endurance performances have been described for running, cycling and for swimming in a heated pool. The present field study of 20 male and 11 female open-water swimmers investigated the changes in body composition and hydration status during an ultra-endurance event. Body mass, both estimated fat mass and skeletal muscle mass, haematocrit, plasma sodium concentration ([Na+]) and urine specific gravity were determined. Energy intake, energy expenditure and fluid intake were estimated. Males experienced significant reductions in body mass (-0.5 %) and skeletal muscle mass (-1.1 %) (P < 0.05) during the race compared to females who showed no significant changes with regard to these variables (P > 0.05). Changes in percent body fat, fat mass, and fat-free mass were heterogeneous and did not reach statistical significance (P > 0.05) between gender groups. Fluid intake relative to plasma volume was higher in females than in males during the ultra-endurance event. Compared to males, females' average increase in haematocrit was 3.3 percentage points (pp) higher, urine specific gravity decrease 0.1 pp smaller, and plasma [Na+] 1.3 pp higher. The observed patterns of fluid intake, changes in plasma volume, urine specific gravity, and plasma [Na+] suggest that, particularly in females, a combination of fluid shift from blood vessels to interstitial tissue, facilitated by skeletal muscle damage, as well as exercise-associated hyponatremia had occurred. To summarise, changes in body composition and hydration status are different in male compared to female open-water ultra-endurance swimmers.  相似文献   

14.
Rapid and complete restoration of fluid balance after exercise is an important part of the recovery process, especially in hot, humid conditions, when sweat losses may be high. Rehydration after exercise can only be achieved if the electrolytes lost in sweat, as well as the lost water, are replaced. However, the amount of electrolytes lost in sweat is highly variable between individuals and although the optimum drink may be achieved by matching drink electrolyte intake with sweat electrolyte loss, this is virtually impossible in sport settings. The composition of sweat varies considerably not only between individuals, but also with time during exercise and it is further influenced by the state of acclimatization. A moderate excess of salt intake would appear to be beneficial as far as hydration status is concerned, without any detrimental effects on health, provided that fluid intake is in excess of sweat loss and that renal function is not impaired. To achieve effective rehydration following exercise in the heat, the rehydration beverage should contain moderately high levels of sodium (at least 50 mmol l -1 ), and possibly also some potassium. The addition of substrate is not necessary for rehydration, although a small amount of carbohydrate (< 2%) may improve the rate of intestinal uptake of sodium and water. The volume of beverage consumed should be greater than the volume of sweat lost to provide for the ongoing obligatory urine losses. Therefore, the palatability of the beverage is important. Many individuals may lose substantial amounts of sweat and will therefore have to consume large amounts of replacement fluids and this is more likely to be achieved if the taste is perceived as being pleasant. Water alone is adequate for rehydration purposes when solid food is consumed, as this replaces the electrolytes lost in sweat. However, there are many situations where intake of solid food is not possible or is deliberately avoided and, in these instances, the inclusion of electrolytes in rehydration beverages is essential. Where a second exercise bout has to be performed, replacement of sweat losses is an essential part of the recovery process. Exercise performance will be impaired if complete rehydration is not achieved.  相似文献   

15.
In 219 recreational male runners, we investigated changes in body mass, total body water, haematocrit, plasma sodium concentration ([Na(+)]), and urine specific gravity as well as fluid intake during a 100-km ultra-marathon. The athletes lost 1.9 kg (s = 1.4) of body mass, equal to 2.5% (s = 1.8) of body mass (P < 0.001), 0.7 kg (s = 1.0) of predicted skeletal muscle mass (P < 0.001), 0.2 kg (s = 1.3) of predicted fat mass (P < 0.05), and 0.9 L (s = 1.6) of predicted total body water (P < 0.001). Haematocrit decreased (P < 0.001), urine specific gravity (P < 0.001), plasma volume (P < 0.05), and plasma [Na(+)] (P < 0.05) all increased. Change in body mass was related to running speed (r = -0.16, P < 0.05), change in plasma volume was associated with change in plasma [Na(+)] (r = -0.28, P < 0.0001), and change in body mass was related to both change in plasma [Na(+)] (r = -0.36) and change in plasma volume (r = 0.31) (P < 0.0001). The athletes consumed 0.65 L (s = 0.27) fluid per hour. Fluid intake was related to both running speed (r = 0.42, P < 0.0001) and change in body mass (r = 0.23, P = 0.0006), but not post-race plasma [Na(+)] or change in plasma [Na(+)] (P > 0.05). In conclusion, faster runners lost more body mass, runners lost more body mass when they drank less fluid, and faster runners drank more fluid than slower runners.  相似文献   

16.
运动员训练和比赛时出汗导致水分和电解质等成分大量流失,并排出乳酸、尿素、肌酸、肌酐等代谢产物到汗液中。通过汗液分析可快速了解运动时运动员身体状况、机体代谢情况以及运动时机体的适应性,在运动员选材、日常体育训练和体能恢复等方面具有十分重要的实际意义。本文综述了近来运动员汗液分析技术的进展,力求全面反映运动员汗液分析的最新进展。  相似文献   

17.
郭强 《体育科技文献通报》2011,19(8):128-129,131
运动饮料能在运动前、中、后为运动员迅速补充水分、电解质和能量,维持和促进体液平衡或快速恢复,可改善体内代谢过程和体温调节。是从运动医学和营养角度来促进运动训练、竞赛和健身的积极手段。作为一种补液方式,其对于运动能力的影响目前普遍受到关注,而现在市场流行的运动饮料也是层出不穷,运动饮料对于运动能力到底有什么样的积极影响,又该如何补充,市场上的饮料是都随意补充的吗?等等这些问题还有待于进一步的科学研究。  相似文献   

18.
苗苗 《四川体育科学》2007,(3):39-41,52
心钠素和醛固酮是体内重要的体液调节激素,运动会引起血浆心钠素(ANP)、醛固酮(ALDO)的增高,血浆心钠素(ANP)随运动强度的增加而增加,系统合理的运动训练能提高血浆心钠素水平,力竭运动血浆ANP含量过度增高,增加潜在的心肌受损的可能性。运动中血浆醛固酮(ALDO)浓度与运动强度和脱水程度相关,血浆心钠素(ANP)与机体脱水程度关系不大。运动中检测心钠素、醛固酮浓度的变化对合理制定运动强度、科学指导运动训练具有重要意义。  相似文献   

19.
There is little information on the impact of hydration status on the psychological response to exercise despite potential implications for adherence to an exercise programme and for overall health and fitness. We investigated initial hydration status, fluid balance, and psychological responses associated with a typical recreational exercise session in healthy adults. Fifty-two participants performed a freely chosen gymnasium-based exercise session at a fitness centre, with ad libitum access to fluids. Urine samples were collected on arrival for analysis of osmolality. Sweat loss was estimated from the change in body mass after correction for fluid intake and urinary losses. Subjective psychological ratings were recorded before and after exercise. Pre-exercise urine osmolality was above 900 mOsmol · kg(-1) (used as a threshold for hypohydration) in 37% of participants. Fluid intake during exercise was 390 ± 298 mL, while estimated sweat loss was 794 ± 391 mL. The percentage change from pre-exercise body mass was -0.62 ± 0.20%. Physically active adults who arrived to take part in exercise hypohydrated reported more negative changes in psychological affect in response to their subsequent freely chosen recreational exercise session than those classified as euhydrated prior to exercise (-0.2 ± 0.7 vs. 0.8 ± 0.7; P < 0.005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号