首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
著名数学教育家波利亚把解题过程划分为审题、拟订解题计划、实现解题计划和回顾四个阶段.他说:“即使相当好的学生,当他得到问题的解答并且干净利落地写下论证后就合上书本找点别的事情来干,那他就错过了解题的一个重要而有教益的方面:通过回顾所完成的解答,通过重新考虑和重新检查这一结果得出这个结果的路子,学生可以巩固他们的知识和发展他们的能力[1].这就启示我们在完成一道题后还应考虑这样的问题:你能检验这一结果或这一论证吗?你能用不同方法导出这一结论吗?有没有更为简单和直观的方法,你能把这一结果或方法用于其他的问题吗?笔者想从以下几个方面略谈拙见,以期引玉.1回顾结论,能发现并纠正明显的错误例1α、β是关于x的方程4x2+4mx+m+2=0的两个根,求α2+β2的最小值及m的值.解α+β=-m,αβ=m4+2,∴α2+β2=(α+β)2-2αβ=m-412-1167,当m=41时,α2+β2取最小值-1167.思考α2+β2能为负值吗?m=14时原方程有解吗?纠正由Δ=16(m2-m-2)≥0,得m≤-1或m≥2,故当m=-1时,α2+β2的最小值是21.2回顾结论,能发现并纠正隐含的错误例2求过P(2,3)且与圆(x-...  相似文献   

2.
在中考复习中,注意某些公式、法则的适用范围以及它的限制条件,是很有必要的.在本文中,我们一起探讨数学中考中容易失分的几个问题.希望能引起同学们的重视,避免摔倒在别人多次绊倒的地方.一、忽视根的判别式例1设x1,x2是方程2x2-4mx+2m2+3m-2=0的两个根.当m为何值时,x12+x22有最小值?求出这个最小值.错解:已知方程的两根是x1,x2,∴x1+x2=2m,x1·x2=2m2+3m-22 .∴x12+x22=(x1+x2)2-2x1x2=(2m)2-2×2m2+3m-22=2m2-3m+2=2(m-34)2+78.(1)∴当m=34时,x12+x22有最小值78.分析:∵x1,x2是原方程的两实根,∴Δ=(-4m)2-4×2(2m2+3m-2)≥0.解得:m≤23.…  相似文献   

3.
一元二次方程的根的判别式和韦达定理(根与系数关系)在解题中有广泛的应用,近年来中考中屡屡以压轴题形式出现,现举例说明·例1(四川省)已知关于x的方程x2-2(m+1)x+m2-2m-3=0,①的两个不相等实数根中有一个根为0,是否存在实数k,使关于x的方程x2-(k-m)x-k-m2+5m-2=0,②的两个实数根x1、x2之差的绝对值为1?若存在,求出k的值;若不存在,请说明理由·解:因为方程①有两个不等实根,所以Δ=|-2(m+1)|2-4(m2-2m-3)=16m+16>0,所以m>-1·又因为方程①有一根为0,所以m2-2m-3=0,即(m-3)(m+1)=0·解得m1=-1,m2=3·又因为m>-1,所以m1=-1应舍去,所以m=3·当…  相似文献   

4.
代数综合题是初中数学中覆盖面最广、综合性最强的题型 .近几年的中考大题多以代数综合题的形式出现 .解代数综合题必须要有科学的分析问题的方法 ,一般分为认真审题、理解题意 ,探求解题思路 ,正确解答等三个步骤 .而在解题中常用的转化、数形结合、分类讨论、方程等数学思想是解代数综合题的灵魂 .1 方程与不等式的综合例 1 已知关于x的方程x2 + 2x + m2 - 1x2 + 2x - 2m=0 ,其中m为实数 .(1)当m为何值时 ,方程没有实数根 ?(2 )当m为何值时 ,方程恰有三个互不相等的实数根 ?求出这三个实数根 .分析 :第 (1)问需用一元二次方程根的判别式…  相似文献   

5.
一、顾此失彼例1(1998·重庆市万州区中考题)在RtABC中,∠C=90°,sinA、sinB是方程(m+5)x2-(2m-5)x+12=0的两个根,求m的值.错解由根与系数关系可得:sinA+cosA=2m-5m+5,sinA·cosA=12m+5.由sin2A+cos2A=1,有2m-5m+52-24m+5=1.解之得m=20或-2.经检验,m=20或-2是原方程的解,∴m=20或-2.分析本题在解分式方程时,考虑到了验根,但却忽略了三角函数的值域.事实上,因∠A是锐角,可知0相似文献   

6.
在中考复习中,注意某些公式、法则的适用范围以及它们的限制条件,是很有必要的.在本文中,我们一起探讨数学中考中容易失分的几个问题,希望能引起同学们的重视.一、忽视应用根的判别式例1已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个实数根α、β满足α1+β1=1,求m的值.(2004年重庆市中考数学试题)错解:∵1α+β1=1,∴αα+ββ=1,即α+β=αβ.又∵α+β=-(2m-3),αβ=m2,∴3-2m=m2.解之,得m1=-3,m2=1.∴m的值是-3或1.分析:应用一元二次方程的根与系数的关系时,首先要判别方程有无实数根,只有符合Δ≥0的条件,方能确保公式的应用.∵α,β…  相似文献   

7.
一元二次方程根的判别式主要用于判断方程根的情况,灵活运用它还可以解决其它问题.一、用于求值例1如果代数式(2m-1)x2+2(m+1)x+4是完全平方式,求m的值.解:∵代数式(2m-1)x2+2(m+1)x+4是完全平方式,∴(2m-1)x2+2(m+1)x+4=0有两个相等的实数根.∴△=〔2(m+1)〕2-4×4(2m-1)=0.解之,得m=1或m=5.二、用于求最值例2已知a、b都是正实数,且a3+b3=2,求a+b的最大值.解:设a+b=k,则b=k-a,将b=k-a代入a3+b3=2,并以a为主元整理,得3ka2-3k2a+k3-2=0.∵a是正实数,则关于a的方程必有实数根,∴△=(-3k2)2-12k(k3-2)≥0,解得0相似文献   

8.
一、填空题1.关于x的方程(m-1)x2+(m+1)x+3m-1=0,当m时,是一元一次方程;当m时,是一元二次方程.2.当x=时,代数式x2-8x+12的值是-4.3.若连续两个奇数的积是15,则这两个数是.4.某厂2003年的钢产量是a吨,计划以后每一年比上一年的增长率为x,那么2005年的钢产量是吨.5.已知方程3x2-9x+m=0的一个根是1,则m的值是.6.写出一个方程,使它的一个根是1,另一个根满足-1相似文献   

9.
一元二次方程一直是中考的重头戏.近年来,围绕着“重在基础,突出能力,尝试创新”的命题思路,一元二次方程新题型精彩纷呈.一、设计有隐含条件的一元二次方程问题例1已知x1、x2是关于x的方程(m-1)2x2-(2m-5)x+1=0的两个实数根.(1)若P=1x1+1x2,求P的取值范围;(2)问x1、x2能否同时为正数?若能同时为正数,求出相应的取值范围;若不能同时为正数,请说明理由.简解:(1)依题意可得(m-1)2≠0,且△≥0.这样可以解得m≤74,且m≠1.又x1+x2=2m-5(m-1)2,x1x2=1(m-1)2,故P=1x1+1x2=x1+x2x1x2=2m-5.∴m=P+52,从而有P≤-32,且P≠-3.(2)由m≤74,且m≠1知x1+x…  相似文献   

10.
一、基础知识“若实数x1、x2是方程ax2+bx+c=0(a≠0)的两个根,则x1+x2=-b/a,x1x2=c/a”,这一关系称之为韦达定理;其逆定理是:“若实数x1,x2满足x1+x2=-b/a,x1x2=c/a,则x1,x2是方程ax2+bx+c=a(a≠0)的两个根”,韦达定理及其逆定理在各类数学竞赛中具有广泛的应用,下面举例加以说明:二、应用举例1.用于求方程中参系数的值例1 设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等  相似文献   

11.
一元二次方程是初中数学的重要内容之一 ,以一元二次方程知识为背景的问题是历年中考的热门试题 .这里与同学们交流一下如何恰当地构造一元二次方程 ,利用根与系数的关系或判别式解题 .一、解不等式问题例 1 已知一元二次方程 2x2 -2x + 3m-1 =0有两个实数根x1 、x2 ,且它们满足不等式 x1 x2x1 +x2 -4 <1 ,求实数m的取值范围 .解 由题意得 :x1 +x2 =1 ,x1 x2 =3m -12 ,代入上式得3m-121 -4 <1 ,∴m >-53.又由Δ≥ 0可得4-4 × 2 ( 3m -1 ) ≥ 0 ,∴m ≤ 12 .∴m的取值范围是 -53相似文献   

12.
一元二次方程根的判别式和根与系数的关系是初中数学的重点内容.解含有字母系数的一元二次方程时,常常会因对字母系数考虑不周,或对判别式运用不当而产生错误.例1求证:关于方程mx2-(m+2)x+1=0有实数根.错解:当m≠0时,Δ=[-(m+2)]2-4m=m2+4,∵m2≥0,∴m2+4>0.即原方程有两个不相等的实数根.分析:含有字母系数的方程不一定是一元二次方程,所以二次项系数也可能等于0,即应对二次项系数进行分类讨论.应补充:当m=0时,原方程变为-2x+1=0,此方程只有一个实数根x=12.例2关于x的方程mx2-(2m+1)x+m=0,有两个不相等的实数根,求m的取值范围.错解:根据题…  相似文献   

13.
关于解两个一元二次方程有公共根的问题,有些同学感到困难.下面提供一例题的几种解法,供同学们参考. 例:m为何值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根. 解法一:利用根与系数的关系设公共实根为a,则方程x2+mx-3=0的两根为a,-m-a.  相似文献   

14.
在解二元一次方程组时 ,若能仔细观察方程组特征 ,并根据解题目标去设计合理的解题方案 ,就会获得巧妙的解题方法 .例 1 若 2 x3 m + 5n+ 9+3 y4m -2 n-7=2 0 0 3是关于 x、y的二元一次方程 ,试求 mn的值 .(广西 2 0 0 3年数学竞赛题 )解 :由题意 ,得 3 m+5 n+9=1,4m-2 n-7=1. 即3 m +5 n=-8,4m -2 n=8. 注意到常数项互为相反数 ,故把两式相加得 :7m +3 n =0 ,∴ 7m =-3 n,∴ mn=-37.例 2 若关于 x、y的方程组 2 x+3 y=2 k+1,  13 x-2 y=4k+3  2 的解 x、y的值之和为 2 40 .试求 k的值 .(2 0 0 1年广西数学竞赛题 )解 :由题意知 :x+y=2…  相似文献   

15.
在学习或考试时 ,每个学生都有这样一个想法 :不但要得出问题的正确答案 ,而且还要尽可能的提高解题速度 .那么 ,怎样才能做到这一点呢 ?笔者认为关键是找到解题的突破口 ,所以下面谈一下寻找突破口的几种常用方法 ,供大家参考 .1 利用关键词突破例 1 如果a、b是质数 ,且a2 - 1 3a m =0 ,b2 - 1 3b m =0 ,那么 ,ba ab 的值为 (   )A .1 2 32 2   B 1 2 52 2 或 2C 1 2 52 2   D 1 2 32 2 或 2( 2 0 0 1年TI杯全国初中数学竞赛试题 )分析 “质数”是本题的关键词 ,若a≠b ,因为质数a、b是方程x2 - 1 3x m =0的两个根 ,所以由根…  相似文献   

16.
解含参数的一元二次方程的整数根问题,关键是要熟练掌握一元二次方程的基础知识,以及整数、完全平方数的性质,并能适当运用分类讨论等思想方法.现举例说明解决这类问题的常用思路与方法.一、判别式法若一元二次方程有整数根,则有Δ≥0,并且Δ恰为完全平方数.同时,方程的二次项系数不为零,由此可解决相关问题.例1当m是什么整数时,关于x的一元二次方程mx2-4x+4=0与x2-4mx+4m2-4m-5=0的解都是整数?解依题意,有Δ1=(-4)2-4m×4≥0,Δ2=(-4m)2-4(4m2-4m-5)≥0.得16-16m≥0,-4m-5≤0.∴-45≤m≤1,而m为整数,∴m=-1,或0,或1.当m=-1时,方程mx2-4x+4=…  相似文献   

17.
李岚  邓革周 《初中生》2015,(15):14-19
方程与不等式是初中数学的核心内容,是历年中考命题的重点.现以2014年中考试题为例,把方程与不等式的常考内容归纳如下,供你复习时参考. 考点一 利用方程(组)解的定义解题 例1(2014年陕西卷)若x=-2是关于x的一元二次方程x2-5/2ax+a2=0的一个根,则a的值为(). A.1或4 B.-1或-4 C.-1或4 D.1或-4 解析:∵x=-2是关于x的一元二次方程x2-5/2ax+a2=0的一个根,∴4+5a+a2=0,解得a1=-1,a2=-4.选B.  相似文献   

18.
一、由方程的定义确定参数例1若(m2-m-2)x2+mx+3=0是关于x的一元二次方程,则m的取值范围是().(A)m≠-1;(B)m≠2;(C)m≠-1且m≠2;(D)一切实数.解:由一元二次方程的定义,得m2-m-2≠0,∴(m-2)(m+1)≠0,∴m≠2且m≠-1.故选(C).二、由方程根的定义确定参数例2方程x2-12x-m=0的一个根是2,那么m的值是.解:由方程根的定义,把x=2代入方程,得22-12×2-m=0,解得m=-20.三、由方程根的情况确定参数例3已知关于x的一元二次方程(1-2k)x2-2k+1√x-1=0有两个不相等的实数根,求k的取值范围.解:∵方程有两个不相等的实数根,∴△=(-2k+1√)2-4(1-2k)×(-1)=-4k…  相似文献   

19.
[题目]若关于x的方程2x+1√=x+m有两个不同的实数根,求实数m的取值范围.错解一:将方程两边同时平方,得x2+(2m-2)x+m2-1=0.∵方程有两个不同的实数根,∴△=(2m-2)2-4(m2-1)>0,即m<1.分析:此解法出错的原因是,思路停留在套用公式上,而完全忽视了题目给出的隐含条件.错解二:将方程两边同时平方,得x2+(2m-2)x+m2-1=0.∵2x+1≥0,即x≥-12,设f(x)=x2+(2m-2)x+m2-1,则△>0,f(-12≥0 解得m<1.分析:错解二的思路是正确的,但却忽视了题目给出的另一个隐含条件x+m≥0.所以,本题的正确答案应是:12≤m<1.一般地,在判断形如ax2+bx+c=0,x∈(t1,t2)的二次…  相似文献   

20.
解答某些与一元二次方程有关的问题时,要注意把根代人方程中.例1如果x=1是已知方程x~2+kx+k-5=0的一个根,那么,k的值等于().解由x=1是已知方程的根,那么1+k+k-5=0,∴k=2.例2若a是一元二次方程x~2-3x+m=0的一个根,-a是一元二次方程x~2+3x-m=0的一个根,那么a的值等于().A.1或2 B.0或-3 C.-1或-2 D.0或3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号