首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
“若函数f(x)与g(x)满足下列条件:①在闭区间[a,b]上连续;②在开区间(a,b)内可导,且对任意x∈(a,b),g′(x)≠0。则在(a,b)内至少存在一点ξ,使 (f(b)-f(a))/(g(b)-g(a))=f′(ξ)/g′(ξ) (*)” 众所周知,这是微分学的基本定理之一:柯西中值定理((*)式称为微分中值公式)。关于它的证明,关健是在于恰当地构造一个辅助函数,再利用罗尔定理。一般教科书上构造的辅助函数是:F(x)=f(x)-f(a)-(f(b)-f(a))/(g(b)-g(a))[g(x)-g(a)]  相似文献   

2.
不等式是初等数学的重要内容之一,在初等数学和高等数学中都广为应用,证明不等式的方法很多,但有的比较烦琐,如果用导数便简单明了,本文试说明导数在证明不等式中的应用.一、用微分中值定理证明不等式微分中值定理:若函数f(x)满足条件:(i)在闭区间〔a,b〕上连续;(ii)在开区间(a,b)内可导,则在区间(a,b)内至少存在一点C,使得f(b)-f(a)=f′(c)(b-a)若不等式的一端是某一个函数F(x)在两点之差F(b)-F(a),则在区间〔a,b〕上利用微分中值定理,再将F′(C)适当放大或缩小.  相似文献   

3.
微分学中,费尔马(Fermat)定理、罗尔(Rolle)定理、拉格朗日(Lagrange)定理、柯西(Cauchy)定理和泰勒(Taylor)定理因为都涉及导数在给定区间内的一个中间值,因此把这些定理叫做微分学中值定理。它们是微分学的理论基础。 费尔马定理 若函数f(x)在点x_0的某邻域U(x_0,δ)内有极值,且在点x_0可导,则f(x_0)=0,它的几何意义是如果曲线y=f(x)在点x_0处具有极值且有切线,则切线必为水平的。由费尔马定理可以导出下面的罗尔定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且有f(a)=f(b),则在(a,b)内至少有一点ξ,使f(ξ)=0。  相似文献   

4.
罗尔定理、拉格朗日定理、柯西定理统称为微分学中值定理。这几个定理是在定义了导数的概念并且在掌握了微分法的基础上,为了进一步研究导数的更深刻的性质而逐步引入的。为探索拉格日定理的一些问题,先回顾一下罗尔定理的内容:如果函数f(x)满足(1)在闭区间[a、b]上连续;(2)在开区间(a,b)内可导;(3)在区间端点的函数值相等,即f(a)=f(b)。那么在(a,b)内至少有一点ξ(a<ξ相似文献   

5.
书〔1〕中证明了下面的R-S积分第一中值定理(参见书〔1〕,第191页命题27)。以后提到积分都是指Riemann-Stietjes积分。定理1 (第一积分中值定理)若在〔a,b〕上f连续,a单词增加,则存在点x,使 a≤X≤b, integral from n=a to b f(t)da(t)=f(x)〔a(b)-a(a)〕。本章(书〔1〕中的第三章)后面的练习题38指出,若定理1中a是严格单调增加函数,就有x∈(a,b),即定理1可改进为:  相似文献   

6.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

7.
数学题是无穷尽的,题型是有限的,要熟练掌握并非难事,也并非题海所能奏效,以下讲几种题型的解法。Ⅰ.微分中值定理中欲证结论:至少存在一个ξ∈(a,b)使得f~(n)(ξ)=k(≠0),或有关a,b,f(a),f(b),ξ,f~(n)(ξ)所构成的代数式的证法。证题思路:作辅助函数F(x),验证F(x)满足罗尔定理条件,由定理得出命题的证明。常用的辅明函数F(x)的作法有两种:原函数法及常数k值法。(1)原函数法(或微分方程法)求作辅助函数F(x)的程序:①将欲证结论中的ξ换成x;②通过恒等变形将式子化为易消去导数符号的形式;  相似文献   

8.
在古典数学分析中,Cauchy中值定理是:若函数f(x)与(?)(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且对任意x∈(a,b)(?)′(x)≠0,则在(a/b)内存在一点C,使得f(b)-f(a)/(?)(b)-(?)(a)=f′(c)/(?)′(c)如果令(?)(x)=x,得  相似文献   

9.
本文着重说明应用微分中值定理证明不等式时,函数f(x)的选取方法,介绍一些用初等数学方法不易证明的或证明步骤较繁的不等式,而用微分中值定理可以简捷地解决的情形,其中关键是要选择好函数f(x)。微分中值定理是:“若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在开区间(a,b)内至少有一点ξ,使得 f′(ξ)=(f(b)-f(a))/(b-a)”。用微分中值定理证明不等式的主要依据是选定符合微分中值定理条件的函数f(x)后,若在所讨论的区间内有m相似文献   

10.
以〔x〕表示不超过x的最大整数,则有 定理1由。(。)z)个数列{f,(:)}, {f二(n)}的项穿插派生而成灼新数列{a。}:f:(1),…,fm(i),f:(2),…,fm(2),…,汽(哟,…,f二(耐,…的通项公式是。一f,(。)〔}。。s犯二工,{〕 f:(,一1)〔{eosn一2_:、—兀IJ … f二(n一, 1)〔j eos牲二塑二J〕. 定理2由,(二)z)个数yIJ{g工(,)}…,{gm(哟}沟项穿插而成的新数列{乡。}g,(1),g:(z),…,gm(爪),92(优 1),…,g二(2川),…,91(,2琳一,n 1),92(”沉一m十2),“’,g二(”m),…的通项公式是b。=g,(”)〔}cosn m一1 仇万{〕 92(:)〔{e 05刀 巾一2 水二}〕·一 g。(:)〔…  相似文献   

11.
微分中值定理证明中的辅助函数   总被引:1,自引:0,他引:1  
本文阐述了用辅助函数证明拉格朗日中值定理的重要性,并得出两个结果: ①证明拉格朗日中值定理的辅助函数为:4(x)=[f(x)-((f(b)-f(a))/(b-a))x]+C;证明柯西中值定理的辅助函数为:相似文献   

12.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

13.
对许多数学命题的论证,若能引入一个恰当的函数,再运用已知的定理、公式,问题就可迎刃而解.然而怎样作辅助函数呢?这是学生中较为普遍地存在的困难.下面就微分中值定理的证明及其应用这个方面谈谈我对此问题的一点体会.一、用Rolle定理来证明Lagrange、Cauchy二定理的辅助函数1.Lagrange定理.设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在该区间内至少存在一点ξ:(a<ξ相似文献   

14.
定理 设函数f(x),g(x)在区间[a,b]可积,F(x,y)=f(x)·g(y),且满足:  相似文献   

15.
我们知道,不定积分总是与某个区间联系在一起的.对〔a,b〕上的函数f(x),f(x)的不定积分是f(x)在〔a,b〕上的原函数的一般形式,即∫f(x)dx=F(x)+C,Ax∈〔a,b〕.  相似文献   

16.
拉格朗日中值定理是微积分学中一个重要定理,对于拉格朗日中值定理的证明,关键是构造一个辅助函数F(X),使F(X)满足罗尔定理的条件f(a)=f(b),由罗尔定理证得结果。  相似文献   

17.
康托定理:闭区间[a,b]上的连续函数f(x)是一致连续函数。证明对于任意ε>0,构造出R~2内的点集:I(ε)={(x,y)|x,y∈[a,b], g(x,y)=|f(x)-f(y)|≥ε} 因为f(x)在[a,b]上连续,g(x,y)=  相似文献   

18.
2004年高考数学试题(广东卷)第21题第(2)问中给出了一个新定理(介值定理),要求学生透彻地理解新定理,准确地把握新定理,灵活地运用新定理,进而解决所给出的新问题.解决这类问题的关键就是创设新定理所需要满足的条件,然后运用新定理的结论来解决问题.这类问题极富思考性和挑战性,值得认真研讨,下面采撷几例,供参考.1阅读领悟函数中的新定理例1设函数f(x)=x-ln(x+m),其中常数m为整数.(1)当m为何值时,f(x)≥0;(2)定理:若函数g(x)在[a,b]上连续,且g(a)与g(b)异号,则至少存在一点x0∈(a,b),使g(x0)=0.试用上述定理证明:当整数m>1时,方程f(x)=0在…  相似文献   

19.
浙江卷     
1.如图1,O是半径为l的球的球心,点A、B、C在球面上,〔扒、(沼、仅二两两垂直,E、F分别是大圆弧屈与屁的中点,则点E、F在该球面上的球面距离是(〕.函数f(x)=max{{x IJ,}x一ZJ}(x eR)的最小值是4.设向量a,b,e满足a十b e=0,(a一b) C...·L.-一’土。,a土b.若}a}一1,则}  相似文献   

20.
、综合范例(a,乙). 例1A一{xI劣=已知f(‘)=x’ ax b(a,西‘R)’‘稗(2)设x,“为长方形的·f(x),x〔R},B一{x!x=f〔f(x)〕,竺x,二11执卜}n}J }mJ扮为长方形的边长,则2(x 封)二8, }nl=x任R},(1)若a=1,b=2,求A UB,A门B,(2)若A二{一i,3},求B;(3)若A={a},求a和乙的值. 解,(1)当a=1,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号