首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The conventional interacting multiple model (IMM) algorithm will increase the computational load when applying a large number of models, meanwhile, it cannot yield accurate estimation results with a small number of models. Furthermore, the unknown target acceleration is regarded as an additional process noise to the target model, and its time-varying variance is hard to be approximated. The paper proposes a fuzzy-logic adaptive variable structure multiple model (FAVSMM) algorithm for tracking a high maneuvering target. The algorithm can optimize the model parameters using the model probability and construct an optimal model set quickly, and the fuzzy-logic IMM algorithm included in the FAVSMM algorithm is adopted for states estimation. The simulation results show that the proposed algorithm can match well with the actual target trajectory with less computational complexity and better accuracy.  相似文献   

2.
In this paper, we study a distributed state estimation problem for Markov jump systems (MJS) over sensor networks, in which each sensor node connects with each other through wireless networks with communication delays. We assume that each sensor node maintains a buffer to store delayed data transmitted from neighbor nodes. A distributed multiple model filter is designed by using the interacting multiple model methods (IMM) and a recursive delays compensation method. In order to ensure the stability, two stability conditions are derived for boundedness of estimation errors and boundedness of error covariance. Finally, the effectiveness of the proposed methods is illustrated by simulations and experiments of maneuvering target tracking.  相似文献   

3.
For target tracking systems, the probability of detecting a target is difficult to determine, and the process noise often has non-Gaussian heavy-tailed characteristics owing to interference from outliers. To address the issues associated with single target tracking within clutters in scenarios with an unknown detection probability and heavy-tailed process noise, this paper presents a variational Bayesian-based adaptive probabilistic data association filter (VB-APDAF). The beta distribution, Pearson type VII distribution and multinomial distribution are used to model the detection probability, the process noise, and the association events, respectively. To guarantee the conjugation, a novel parameter estimation strategy is employed. In this strategy, the previous state is introduced in the state update process to construct the joint probability density function of parameters to be estimated and data set. The VB framework is used to estimate the target state, detection probability, and associated events. An experiment was performed under simulated conditions to demonstrate the effectiveness of the proposed filter.  相似文献   

4.
For state estimation of high accuracy, prior knowledge of measurement noise is necessary. In this paper, a method for solving the joint state estimation problem of jump Markov nonlinear systems (JMNSs) without knowing the measurement noise covariance is developed. By using the Inverse-Gamma distribution to describe the dynamics of measurement noise covariance, the joint conditional posterior distribution of the state variable and measurement noise covariance is approximated by a product of separable variational Bayesian (VB) marginals. In the newly constructed approach, the interacting multiple model (IMM) algorithm, as well as the particle-based approximation strategy, is employed to handle the computationally intractable problem and the nonlinear characteristics of systems, respectively. An interesting feature of the proposed method is that the distribution of states is spanned by a set of particles with weights, while the counterpart of measurement noise covariance is obtained analytically. Moreover, the number of particles is fixed under each mode, indicating a reasonable computational cost. Simulation results based on a numerical example and a tunnel diode circuit (TDC) system are presented to demonstrate that the proposed method can estimate the measurement noise covariance well and provide satisfied state estimation when the statistics of the measurement are unavailable.  相似文献   

5.
This paper considers the output feedback sliding-mode control for an uncertain linear system with unstable zeros. Based on a frequency shaping design, a dynamic-gain observer is used for state estimation of an uncertain system. This paper confirms that (1) state estimation is globally stable in a practical sense, (2) the resultant error can be arbitrarily small with respect to the system uncertainties, and (3) the proposed sliding-mode control can drive the uncertain system state into an arbitrarily small residual set around the origin, such that the size of residual set is controlled by the filter design. Moreover, the proposed control design is inherently robust to measurement noise; the effect of measurement noise can effectively be attenuated without any additional work.  相似文献   

6.
This paper is concerned with the event-based fusion estimation problem for a class of multi-rate systems (MRSs) subject to sensor degradations. The MRSs under consideration include several sensor nodes with different sampling rates. To facilitate the filter design, the MRSs are transformed into a single-rate system (SRS) by using an augmentation approach. A set of random variables obeying known probability distributions are used to characterize the phenomenon of the sensor degradations. For the purpose of saving the limited communication resources, the event-triggering mechanism (ETM) is adopted to regulate the transmission frequency of the measurements. For the addressed MRSs, we aim to design a set of event-based local filters for each sensor node such that the upper bound of each local filtering error covariance (FEC) is guaranteed and minimized by designing the filter parameter appropriately. Subsequently, the local estimates are fused with the aid of covariance intersection (CI) fusion approach. Finally, a numerical experiment is exploited to demonstrate the usefulness of the developed fusion estimation algorithm.  相似文献   

7.
This study considers state and fault estimation for a switched system with a dual noise term. A zonotopic and Gaussian Kalman filter for state estimation is designed to obtain state estimation interval in the presence of both stochastic and unknown but bounded (UBB) uncertainties. The switching state and fault state of the system are distinguished by detecting whether the system measurement date is within the bounds of its predicted output. Once the switched time is detected in the system, the filter zonotopic and Gaussian Kalman functions are initialized. Once the fault time is detected, a zonotopic and Gaussian Kalman filter-based fault estimator is constructed to estimate the corresponding faults. Finally, a numerical simulation is presented to demonstrate the accuracy and effectiveness of the proposed algorithm.  相似文献   

8.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

9.
Accurate and effective state estimation is essential for nonlinear fractional system, since it can provide some vital operation information about the system. However, inevitably missing measurements and additive uncertainty in the gain will affect the performance of estimation result. Thus, in this paper, in order to deal with these problems, a novel robust extended fractional Kalman filter (REFKF) is developed for states estimation of nonlinear fractional system, by which the states can be estimated accurately even with missing measurements. Finally, simulation results are provided to demonstrate that the proposed method can achieve much better estimation performance than the conventional extended fractional Kalman filter (EFKF).  相似文献   

10.
This paper considers the identification problem of bilinear systems with measurement noise in the form of the moving average model. In particular, we present an interactive estimation algorithm for unmeasurable states and parameters based on the hierarchical identification principle. For unknown states, we formulate a novel bilinear state observer from input-output measurements using the Kalman filter. Then a bilinear state observer based multi-innovation extended stochastic gradient (BSO-MI-ESG) algorithm is proposed to estimate the unknown system parameters. A linear filter is utilized to improve the parameter estimation accuracy and a filtering based BSO-MI-ESG algorithm is presented using the data filtering technique. In the numerical example, we illustrate the effectiveness of the proposed identification methods.  相似文献   

11.
In this paper, we present a secure distributed estimation strategy in networked systems. In particular, we consider distributed Kalman filtering as the estimation method and Paillier encryption, which is a partially homomorphic encryption scheme. The proposed strategy protects the confidentiality of the transmitted data within a network. Moreover, it also secures the state estimation computation process. To this end, all the algebraic calculations needed for state estimation in a distributed Kalman filter are performed over the encrypted data. As Paillier encryption only deals with integer data, in general, this, in turn, provides significant quantization error in the computation process associated with the Kalman filter. However, the proposed estimation approach handles quantized data in an efficient way. We provide an optimality and convergence analysis of our proposed method. It is shown that state estimation and a covariance matrix associated with the proposed method remain with a certain small radius of those of a conventional centralized Kalman filter. Simulation results are given to further demonstrate the effectiveness of the proposed scheme.  相似文献   

12.
This paper investigates the event-based state and fault estimation problem for stochastic nonlinear system with Markov packet dropout. By introducing the fictitious noise, the fault is augmented to the system state. Then combining the unscented Kalman filter (UKF) with event-triggered and Markov packet dropout, the modified UKF is proposed to estimate the state and fault. Meanwhile, the stochastic stability of the proposed filter is also discussed. Finally, two simulation results illustrate the performance of the proposed method.  相似文献   

13.
This paper proposes an improved model based pipeline leak detection and localization method based on compressed sensing (CS) and event-triggered (ET) particle filter (ET-PF). First, the state space model of the pipeline system is established based on the characteristic line method. Then, the CS method is used to preprocess the sensor signals to recover the potentially lost leak information which is caused by the low sampling frequency of the industrial pipeline sensors, and an event based beetle antennae search (BAS) particle filter (BAS-PF) is proposed to improve the accuracy and efficiency of the pipeline state estimation. Finally, a pipeline leak detection and localization method is developed based on the proposed signal processing, and state estimation algorithms, as well as a pipeline partition strategy. Experiment results show that the proposed method can accurately detect and locate the leak of the pipeline system with a localization error of about 1.4%.  相似文献   

14.
卞丽 《科技通报》2012,28(4):49-51
采用了交互式多模型(IMM)算法进行目标定位跟踪。交互式多模型(IMM)作为一种数据互联算法具有自适应的特点,可以有效地对各个模型的概率进行精细地调整,尤其适用于对机动目标的定位跟踪。实验结果表明,本文提出的算法能够有效地对目标进行定位跟踪。  相似文献   

15.
This paper studies the robust stochastic stabilization problem for a class of fuzzy Markovian jump systems with time-varying delay and external disturbances via sliding mode control scheme. Based on the equivalent-input-disturbance (EID) approach, an online disturbance estimator is implemented to reject the unknown disturbance effect on the considered system. Specifically, to obtain exact EID estimation Luenberger fuzzy state observer and a low-pass filter incorporated to the closed-loop system. Moreover, novel fuzzy EID-based sliding mode control law is constructed to ensure the stability of the closed-loop system with satisfactory disturbance rejection performance. By employing Lyapunov stability theory and some integral inequalities, a new set of delay-dependent robust stability conditions is derived in terms of linear matrix inequalities (LMIs). The resulting LMI is used to find the gains of the state-feedback controller and the state observer a for the resulting closed-loop system. At last, numerical simulations based on the single-link arm robot model are provided to illustrate the proposed design technique.  相似文献   

16.
This paper is concerned with a security problem about malicious integrity attacks in state estimation system, in which multiple smart sensors locally measure information and transmit it to a remote fusion estimator though wireless channels. A joint constraint is considered for the attacker behaviour in each channel to keep stealthiness under a residual-based detector on the remote side. In order to degrade the estimator performance, the attacker will maximize the trace of the remote state estimation error covariance which is derived based on Kalman filter theory. It is proved that the optimal linear attack strategy design problem is convex and finally turned into a semi-definite programming problem. In addition, the tendency of attack behaviour on recursive and fixed Kalman filter system is analyzed. Several examples are given to illustrate the theoretical results.  相似文献   

17.
In large-scale complex dynamical networks, it is significant to estimate the states of target nodes with only a part of measured nodes. Meanwhile, multilayer complex dynamical networks exist widely in society and engineering. Therefore, it has important theoretic meaning and practical value to study the state estimation of target nodes in multilayer complex dynamical networks with limited node measurements. In this paper, with the measurable state information of a portion of nodes in one layer in the multilayer complex dynamical network, the state estimation of target nodes in other layers is studied. First, we build the model of the multilayer complex dynamical network which includes some target nodes and sensor nodes. Second, auxiliary nodes are selected by using the maximum matching principle in graph theory to construct the augmented node set. Third, we discuss the relationship between the minimum number of auxiliary nodes and interlayer connection probability in the multilayer complex dynamical network. Forth, an appropriate functional state observer is designed with limited number of measured nodes according to a typical model-based algorithm. Finally, numerical simulations are given to demonstrate the accuracy of the proposed method. The proposed method can achieve the accurate estimation with less placement of observers and fewer computational costs in the multilayer complex dynamical network.  相似文献   

18.
In this paper, global positioning system (GPS) signal acquisition is investigated under weak signal conditions, when a catastrophic deterioration in performance begins to occur causing outliers to happen in range estimation. The paper compares conventional detection techniques in GPS signal acquisition. The theoretical probability of outlier is derived for GPS Gold code and compared to the probability of outlier using Monte Carlo simulation. In addition, the theoretical probability of outlier for coherent detection technique is also derived. A novel binary hypothesis test is introduced which is used to generate a new set of curves to analyze the performance of detectors in weak signal conditions.  相似文献   

19.
This paper proposes solutions that reduce the inaccuracy of distributed state estimation and consequent performance deterioration of distributed model predictive control caused by faults and inaccurate models. A distributed state estimation method for large-scale systems is introduced. A local state estimation approach considers the uncertainty of neighbor estimates, which can improve the state estimation accuracy, whereas it keeps a low network communication burden. The method also incorporates the uncertainty of model parameters which improves the performance when using simplified models. The proposed method is extended with multiple models and estimates the probability of nominal and fault behavior models, which creates a distributed fault detection and diagnosis method. An example with application to the building heating control demonstrates that the proposed algorithm provides accurate state estimates to a controller and detects local or global faults while using simplified models.  相似文献   

20.
In this paper, a new algebraic approach to the on-line signal derivatives estimation is proposed. The proposed approach is based on the conversion of the truncated Taylor series expansion to the set of linearly independent equations regarding the signal derivatives. The nonhomogeneous parts of the obtained set of equations are convolution integrals, which can be transformed to the stable linear state-space filter realization. The proposed algebraic estimator provides stable convergence without the need for periodic re-initialization, as in the case of the conventional algebraic estimators. In contrast to the Taylor series-based tracking differentiators, the proposed estimator also provides an estimation of the arbitrary number of the higher-order signal derivatives. In addition, the tuning of the estimator parameters does not depends on the filter dimension. The efficiency of the proposed estimator is illustrated by the simulation examples and experimental results related to the monitoring of the surgical drilling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号