首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using a bilinear transformation and some linear algebraic techniques, new matrix bounds of the solution of the continuous algebraic Lyapunov equation (CALE) are derived in this paper. Comparing to existing works, these obtained matrix bounds are less restrictive and are easy to be calculated. A numerical example is also given to demonstrate the merits of the present results.  相似文献   

2.
This paper discusses further results for the bounds of the solutions of the algebraic matrix Generalized Lyapunov Equations (GLE). Several iterative procedures for more precise estimations are proposed. Furthermore, some new matrix and eigenvalue bounds for the solutions of the GLE are measured by making use of linear algebraic techniques. It is also shown the majority of existing matrix bounds of the continuous and discrete Lyapunov equations are the special cases of ours.  相似文献   

3.
In this paper, by constructing the equivalent form of the continuous algebraic Riccati equation and utilizing the eigenvalue and singular value inequalities of matrix's sum and product, we propose new lower and upper matrix bounds for the solution of the continuous algebraic Riccati equation. Finally, we give corresponding numerical examples to illustrate the effectiveness of our results.  相似文献   

4.
This paper revisits the observer-based positive edge consensus problem for nodal networks. So far, existing positive edge consensus of directed networks with less conservative connectivity conditions have to use the global topology information. On the other hand, instead of using global topology information, the positive consensus conditions using the bounds of the eigenvalues of the Laplacian matrix are conservative. To tackle these problems, less conservative bounds of the eigenvalues of the Laplacian matrix are presented. Based on a general distributed observer-based approach, the necessary and sufficient conditions of the edge consensus are derived. And then, with the improved bounds of the Laplacian eigenvalues, less conservative sufficient conditions without using global topology information are given. By solving the algebraic Riccati inequalities, semi-definite programming algorithms are developed to obtain the solutions. Finally, simulation results are also given to illustrate the given results.  相似文献   

5.
In this paper, a new direct method based on the Chebyshev cardinal functions is proposed to solve a class of variable-order fractional optimal control problems (V-OFOCPs). To this end, a new operational matrix (OM) of variable-order (V-O) fractional derivative in the Caputo sense is derived for these basis functions and is used to obtain an approximate solution for the problem under study. In the proposed method, the state and the control variables are expanded in terms of the Chebyshev cardinal functions with unknown coefficients, at first. Then, the OM of V-O fractional derivative and some properties of the Chebyshev cardinal functions are employed to achieve a nonlinear algebraic equation corresponding to the performance index and a nonlinear system of algebraic equations corresponding to the dynamical system in terms of the unknown coefficients. Finally, the method of constrained extremum is applied, which consists of adjoining the constraint equations derived from the given dynamical system and the initial conditions to the performance index by a set of undetermined Lagrange multipliers. As a result, the necessary conditions of optimality are derived as a system of algebraic equations in the unknown coefficients of the state variable, control variable, and Lagrange multipliers. Furthermore, some numerical examples of different types are demonstrated with their approximate solutions for confirming the high accuracy and applicability of the proposed method.  相似文献   

6.
In this paper, we discuss the properties of the eigenvalues related to the symmetric positive definite matrices. Several new results are established to express the structures and bounds of the eigenvalues. Using these results, a family of iterative algorithms are presented for the matrix equation AX=F and the coupled Sylvester matrix equations. The analysis shows that the iterative solutions given by the least squares based iterative algorithms converge to their true values for any initial conditions. The effectiveness of the proposed iterative algorithm is illustrated by a numerical example.  相似文献   

7.
There are few techniques available to numerically solve linear Fredholm integrodifferential-difference equation of high-order. In this paper we show that the Taylor matrix method is a very effective tool in numerically solving such problems. This method transforms the equation and the given conditions into the matrix equations. By merging these results, a new matrix equation which corresponds to a system of linear algebraic equation is obtained. The solution of this system yields the Taylor coefficients of the solution function. Some numerical results are also given to illustrate the efficiency of the method. Moreover, this method is valid for the differential, difference, differential-difference and Fredholm integral equations. In some numerical examples, MAPLE modules are designed for the purpose of testing and using the method.  相似文献   

8.
This paper addresses the estimation problem for the steady state and error covariances of continuous systems subjected to additive and multiplicative noise. Several upper and lower matrix bounds of these covariances are developed. Comparing to existing results, these obtained bounds are more general. Furthermore, it is also shown that they are sharper for some case(s).  相似文献   

9.
The main goal of this study is to develop an efficient matrix approach for a new class of nonlinear 2D optimal control problems (OCPs) affected by variable-order fractional dynamical systems. The offered approach is established upon the shifted Chebyshev polynomials (SCPs) and their operational matrices. Through the way, a new operational matrix (OM) of variable-order fractional derivative is derived for the mentioned polynomials.The necessary optimality conditions are reduced to algebraic systems of equations by using the SCPs expansions of the state and control variables, and applying the method of constrained extrema. More precisely, the state and control variables are expanded in components of the SCPs with undetermined coefficients. Then these expansions are substituted in the cost functional and the 2D Gauss-Legendre quadrature rule is utilized to compute the double integral and consequently achieve a nonlinear algebraic equation.After that, the generated OM is employed to extract some algebraic equations from the approximated fractional dynamical system. Finally, the procedure of the constrained extremum is used by coupling the algebraic constraints yielded from the dynamical system and the initial and boundary conditions with the algebraic equation extracted from the cost functional by a set of unknown Lagrange multipliers. The method is established for three various types of boundary conditions.The precision of the proposed approach is examined through various types of test examples.Numerical simulations confirm the suggested approach is very accurate to provide satisfactory results.  相似文献   

10.
This paper presents new exponential stability and stabilization conditions for a class of uncertain linear time-delay systems. The unknown norm-bounded uncertainties and the delays are time-varying. Based on an improved Lyapunov-Krasovskii functional combined with Leibniz-Newton formula, the robust stability conditions are derived in terms of linear matrix inequalities (LMIs), which allows to compute simultaneously the two bounds that characterize the exponential stability rate of the solution. The result can be extended to uncertain systems with time-varying multiple delays. The effectiveness of the two stability bounds and the reduced conservatism of the conditions are shown by numerical examples.  相似文献   

11.
This paper deals with the absolute stability analysis for uncertain time-delayed Lur systems with sector and slope restricted nonlinearities. New delay-dependent stability criteria are derived via linear matrix inequality (LMI) formulation that can be easily solved by various convex optimization techniques. Sector bounds and slope bounds are employed to a Lyapunov-Krasovskii functional through convex representation of the nonlinearities so that less conservative stability conditions are obtained. A numerical example shows effectiveness of the proposed stability condition over some existing ones.  相似文献   

12.
This paper considers the couple-group consensus problem for multi-agent networks with fixed and directed communication topology, where all agents are described by discrete-time second-order dynamics. Consensus protocol is designed such that some agents in a network reach a consistent value, while other agents reach another consistent value. The convergence of the system matrix is discussed based on the tools from matrix theory. An algebraic condition is established to guarantee couple-group consensus. Moreover, for a given communication topology, a theorem is derived on how to select proper control parameters and sampling period for couple-group consensus to be reached. Finally, simulation examples are presented to validate the effectiveness of the theoretical results.  相似文献   

13.
A set of the block pulse functions is applied to solve the Fredholm's and the Volterra's integral equations of the second kind. An algebraic equation in matrix form which is equivalent to the solution of the integral equation is developed. The approximate results are easily obtained by a few computations. An accurate solution canbe evaluated in a digital computer by solving the algebraic equation. Two examples are given.  相似文献   

14.
This paper is concerned with state feedback stabilization of discrete-time switched singular systems with time-varying delays existing simultaneously in the state, the output and the switching signal of the switched controller. On the basis of equivalent dynamics decomposition and Lyapunov–Krasovskii method, exponential estimates for the response of slow states of the closed-loop subsystems running in asynchronous and synchronous periods are first given. Exponential estimates for the response of fast states are also provided by establishing an analytic equation to solve the fast states and using some algebraic techniques. Then, by employing the obtained exponential estimates and the piecewise Lyapunov function approach with average dwell time (ADT) switching, sufficient conditions for the existence of a class of stabilizing switching signals and state feedback gains are derived, which explicitly depend on upper bounds on the delays and a lower bound on the ADT. Finally, two numerical examples are provided to illustrate the effectiveness of the obtained theoretical results.  相似文献   

15.
This paper investigates the problem of robust stability for neutral type system with mixed delays and time-varying structured uncertainties. Based on Lyapunov stability theory and linear matrix inequalities (LMIs) method, some new stability criteria are presented. The difference between this paper and other existing results is that the lower bounds and upper bounds of the neutral-delay and discrete-delay are considered, which will obtain some less conservative stability analysis results. Several numerical examples are given to demonstrate the effectiveness and merit of the proposed results.  相似文献   

16.
By the formulation of matrix function, a system of linear differential equations with constant coefficients can be uniquely solved. The desired solution is simply expressed as the matrix product of two factors: (1) a variable vector, uniquely derived from the given system, can be set aside after it is found; and (2) a constant matrix, directly related to the initial conditions, is computed numerically. The effort of re-computation is very minimal upon the initial conditions changed. For the classical Laplace transformation, the solution of the differential equation must be recalculated from the very beginning whenever the initial conditions are altered.A typical numerical example is provided in detail to show the merit of the approaches presented.  相似文献   

17.
This paper considers the problem of identifying the parameters of dynamic systems from input-output records. Both lumped-parameter and distributed-parameter systems, deterministic and stochastic, are studied. The approach adopted is that of expanding the system variables in Walsh series. The key point is an operational matrix P which relates the coefficient matrix Г of the Walsh series of a given function with the coefficient matrix of its first derivative. Using this operational matrix P one overcomes the necessity to use differentiated data, a fact that usually is avoided either by integration of the data or by using discrete-time models. Actually, the original differential input-output model is converted to a linear algebraic (or regression) model convenient for a direct (or a least squares) solution. A feature of the method is that it permits the identification of unknown initial conditions simultaneously with the parameter identification. The results are first derived for single-input single-output systems and then are extended to multi-input multi-output systems. The case of non-constant parameters is treated by assuming polynomial forms. Some results are also included concerning the identification of state-space and integral equation models. The theory is supported by two examples, which give an idea of how effective the method is expected to be in the real practice.  相似文献   

18.
In the current work, the Chebyshev collocation method is adopted to find an approximate solution for nonlinear integral equations. Properties of the Chebyshev polynomials and operational matrix are used in the integral equation of a system consisting of nonlinear algebraic equations with the unknown Chebyshev coefficients. Numerical examples are presented to illustrate the method and results are discussed.  相似文献   

19.
By means of the real linear operator, we establish an iterative algorithm for solving a class of complex generalized coupled Sylvester matrix equations. The finite termination of the proposed algorithm is proved. By representing a complex matrix as a larger real matrix, we present a new method to prove that the minimum-norm solution or minimum-norm least squares solution of the complex generalized coupled Sylvester matrix equations can be obtained by an appropriate selection for the initial matrices, which has not been found in the existing work. Numerical experiments on some randomly generated data and practical image restoration problem show that the proposed algorithm is feasible and effective.  相似文献   

20.
The purpose of this paper is to present an iterative algorithm for solving the general discrete-time periodic Sylvester matrix equations. It is proved by theoretical analysis that this algorithm can get the exact solutions of the periodic Sylvester matrix equations in a finite number of steps in the absence of round-off errors. Furthermore, when the discrete-time periodic Sylvester matrix equations are consistent, we can obtain its unique minimal Frobenius norm solution by choosing appropriate initial periodic matrices. Finally, we use some numerical examples to illustrate the effectiveness of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号