首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由曲线关于直线的对称变换 定理 曲线f(x,y)=0关于定直线Ax By C=0的对称曲线是:f(x-(2A(Ax By C))/(A~2 B~2), y-(2B(Ax By C))/(A~2 B~2))=0。 (证明略) 由此可知,直线ax by c=0关于直线Ax By C=0的对称直线是:a[x-(2A(Ax By C))/(A~2 B~2)] b[y-(2B(Ax By C))/(A~2 B~2)] C=0,整理之不难得到:  相似文献   

2.
设l_1:Ax+By+c=0,l_2:Bx-Ay+d=0,则以l_1为x″轴,l_2为y″轴的坐标变换公式是: x″=Bx-Ay+d/A~2+B~2,或y″=Ax+By+c/(A~2+B~2)~(1/2)x=Ay″+Bx″+c/(A~2+B~2)-(A c/(A~2+B~2)+B d/(A~2+B~2)+c)/(A~2+B~2)~(1/2),y=By″-Ax″+d/(A~2+B~2)~(1/2)-(B c/(A~2+B~2)-A d/(A~2+B~2)+d)/(A~2+B~2)~(1/2)便于记忆,设f(x,y)=Ax+By+c/(A~2+B~2)~(1/2),g(x,y)=Bx+Ay+d/(A~2+B~2)~(1/2),则坐标变换公式是:x″=y(x,y),或y″=f(x,y)  相似文献   

3.
平面解析几何中“点到直线的距离”公式,除了教材中介绍的两种推导方法之外,还可以利用初中代数中的“求二次函数的极值”方法推出.已知:点P (x_o,y_o),直线 l:Ax+By+C=0(A~2+B~2≠0).求:点 P 到直线 l 的距离.解:设 M(x,y)是直线 l 上的任意一点.∵在直线方程 Ax+By+C=0中,A、B 至少有一个不为零,不妨设 B≠0,则  相似文献   

4.
一条直线和一条圆锥曲线的位置可以有相交、相切或相离三种情况。下面给出在给定一条直线方程和一条圆锥曲线的方程的条件下,判定它们的位置关系的定理。定理一已知直线l:Ax+By+C=0和椭圆E:x~2/a~2+y~2/b~2=1,若a~2A~2+b~2B~2>C~2则l和E相交;若a~2A~2+b~2B~2=C~2则l和E相切:若 a~2A~2+b~2B~2相似文献   

5.
关于直线与圆锥曲线相切的充要条件有下述定理: 一、直线l:Ax By=1 (A·B≠0)与椭圆C:x~2/a~2 y~2/b~2=1相切的充要条件是 a~2A~2 b~2B~2=1。证明:(1)必要性: 由方程组消去y得关于x的一元二次方程 (a~2A~2 b~2B~2)x~2-2a~2Ax a~2(1-b~2B~2)=0。再由它的判别式等于0,得 a~2A~2 b~2B~2=1。 (2)充分性(略) 推论:直线l:Ax By=1与圆x~2 y~2=R~2相切的充要条件是: (A~2 B~2)·R~2=1 利用推论和平移,不难证明直线Ax By C=0  相似文献   

6.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

7.
要求已知点M(a,b)关于直线Ax+By+C=0的对称点N(x_0,y_0)的坐标,可由直线Ax+By+C=0是连接两点M(a,b)与N(x_0,y_0)的线段MN的垂直平分线而推得。由线段MN的中点((a+x_0)/2,(b+y_0)/2)在直线Ax+By+C=0上,有  相似文献   

8.
在学习了点到直线距离公式后 ,总觉得课本上对这一公式的证明比较繁琐 .其实 ,这一公式还有多种证法 .设P(x0 ,y0) ,L :方程Ax +By+C =0(A ,B不同时为零 )当A =0或B =0时公式显然成立 ,因此 ,这里只证明A ≠ 0 ,B≠ 0时的情况 .已知 :P(x0 ,y0 ) ,L :Ax+By +C =0(A ≠ 0 ,B ≠ 0 ) ,求证 :P到L的距离d =|Ax0 +By0 +C|A2 +B2 .证法一 :过P点作L的垂线交L于Q(x1 ,y1 ) ,则kPQ =BA∴ x1 -x0y1 -y0=AB ①∵Ax1 +By1 +C =0 ,∴将其变形为A(x1 -x0 ) +B(y1 -y0 )=-(Ax0 +By0 +C) ②联立①②得 :x1 -x0 =-A(Ax0 +By0 +C)A2 +…  相似文献   

9.
倾斜角为a=(kπ)/4的直线有四条l_1:x=a,l_2:y=b,l_3:x y-b=0,l_4:x-y b=0. 设(x_0,y_0)关于直线Ax By C=0的对称点为(x′,y′).应用对称点坐标公式可分别求得关于l_1-l_4的对称点坐标:  相似文献   

10.
本文介绍曲线Ax2+By2=C(AB≠0)的一条有趣性质,并以高考题为例说明其应用.1曲线的性质定理设曲线Ax2+By2=C(AB≠0)与直线P1P2相交于P1(x1,y1)、P2(x2,y2)两点,P为线段P1P2的中点,若直线P1P2、OP的斜率分别为k、m,则A+kmB=0.证明设P(x0,y0),则x1+x2=2x0,y1+y2=2y0,且xy00=1m.因为P1(x1,y1)、P2(x2,y2)两点在曲线上,所以Ax21+By12=C,Ax22+By22=C.两式相减并整理,得A(x1-x2)x0+B(y1-y2)y0=0,由题意知x1≠x2,则有y1-y2x1-x2=-AByx00,即k=-mAB,所以A+kmB=0.2性质的应用2·1求圆锥曲线的离心率例1(2005年全国高考题)已知椭圆的中…  相似文献   

11.
已经有很多文章介绍了轴对称坐标变换公式{x′=x-2A·(Ax By C)/(A~2 B~2) y′=y-2B·(Ax By C)/(A~2 B~2) (1)其中(x,y)和(x′,y′)是关于直线Ax By C=0对称的两个点。从公式(1)可以看到,对称点(x′,y′)的坐标与点(x,y)到直线Ax By C=0的距离有联系,这就容易联想到用点到直线的距离来推导公式(1),从而使公式(1)具有更明显的几何意义。本文就上述思路,给出公式(1)的一个证明方法。在证明之前,先介绍下面两个命  相似文献   

12.
定理已知点P(a,0)、Q关于直线l:Ax+By+C=0对称,点R(x_0,y_0)是直线PQ外一点,则证明:设Q坐标为(X,Y)。∵直线PQ和直线l互相垂直, ∴ Y-b/X-a=B/A,即 BX-AY=Ba-Ab. (1)又∵ P、Q关于直线l对称,且在l的两侧, ∴ AX+BY+C=-(Aa+Bb+C),即 AX+BY=-(Aa+Bb+2C). (2) 将(1)、(2)联立,可得如下关于X、Y的线性方程组: BX-AY=Ba-Ab, AX+BY=-(Aa+Bb+2C),解之得X=Au+a, u=-2(Aa+Bb+C)/A~2+B~2 Y=Bu+b, ∴点Q坐标为(Au+a,Bu+b).  相似文献   

13.
在直角坐标平面内点P(X_0,y_0),直线l:Ax By C=0,过 P 作 l 的垂线 PQ,设垂足为 Q(x',y'),显然直线 PQ 的方程为:B(x-x_0)-A(y-y_0)=0,令x'-x_0=λA,则 y-y_0=λB,又Q∈l,则有:A(x_0 λA) B(y_0 λB) c=0.解得:λ=-Ax_0 By_0 C/A~2 B~2,显然λ是由点 P 和直线 l 确定的常量.我们把它记作λ(P,l),有时简记为λ.显然,过 P 作 l 的垂线之垂足 Q(x_0 XA,y_0 λB);P 关于 l 的对称点 P'(z_0 2λA,y_0 2λB).  相似文献   

14.
设点A(m,n)关于直线L:Ax By=0(A~2 B~2≠0)的对称点为B(x′,y′),则其中θ为直线L的倾斜角。  相似文献   

15.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

16.
二元二次多项式 F(x,y)=Ax~2 2Bxy cy~2十2Dx 2Ey F 式中,A、B、C、D、E、F∈R 用矩阵表示,即为 定义1 称为二元二次多项式的配极形式。 配极形式F~*(X_0,y_0;x,y)有如下一些性质: (1)对称性 F~*(x_0,y_0;x,y)=F~*(x,y;x_0,y_0) (2)还原性 F~*(x_0,y_0;x_0,y_0)=F(x_0,y_0) 利用矩阵的运算性质,不难证明性质(1)和性质(2)。 (3)设a、b∈R,且a b=1,则  相似文献   

17.
《平面解析几何》教材中关于点到直线的距离公式的证明较为复杂,本文给出一个简化证明,供大家参考,本证明的核心在于对垂足的处理.证明:已知点 P(x_0,y_0)和直线 l:Ax By C=0,先设 A≠0,B≠0,又设点 P 到直线 l 的垂线为 l′,垂足为 Q(x_1,y_1),由l′⊥l 可知l′的斜率为(B/A)。所以  相似文献   

18.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

19.
公式 如果已知点P的坐标为 (x0 ,y0 ) ,直线l的方程为Ax+By +C=0 ,则点P到直线l的距离为d=|Ax0 +By0 +C|A2 +B2 .1 一点质疑此公式是高中教科书 (试验修订本 ·必修 )《数学》第二册 (上 ) (以下简称新教材 )第 7.3节的内容 ,新教材给出了此点到直线距离公式的推导过程 ,并指出了用两点间距离公式推导的繁琐和运算过程的复杂 .其实 ,在教材中 ,编者一再提到的思路自然、运算复杂的推导方法其实是很简单、巧妙的 .具体推导如下 :推导 1 设A≠ 0 ,B≠ 0 ,过P作直线l的垂线 ,垂足为Q(x1,y1) ,则Ax1+By1+c=0 ,y1- y0x1-x0 =BA ,即A…  相似文献   

20.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号