首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
定理 设数列 {an}是以d为公差的等差数列 ,Sn 为 {an}的前n项和 ,记bn=Snn ,则数列 {bn}是以d2 为公差的等差数列 .简证 数列 {an}是以d为公差的等差数列 ,则 Sn =na1+n(n- 1)2 d ,∴bn =Snn =a1+(n- 1)· d2 .易知 {bn}是以a1为首项 ,d2 为公差的等差数列 .利用这一性质 ,可以方便地解决等差数列中某些与前n项和有关的问题 ,方法简练、实用 ,也易于被同学们接受 .下面举例说明 .例 1 设 {an}是等差数列 ,Sn 为数列 {an}的前n项和 .已知S5=2 8,S10 =36 ,求S17.解 记bn =Snn ,由定理知 ,数列 {bn}是等差数列 ,设其公差为d′ ,则d′=…  相似文献   

2.
设等差数列{an}的首项为a1,公差为d,前n项和为Sn,除了课本中介绍前n项和Sn的两个公式,即Sn=(n(a1 an))/2和Sn=na1 (n(n-1)d)/2,以及在所有数列中都有an={Sn-Sn-1,n≥2, S1,n=1, 还可得到关于Sn的下列几个常见性质。  相似文献   

3.
徐国文 《新高考》2007,(4):21-22
近几年的高考题和各地模拟题中常常涉及到递推数列,要解决递推数列的问题往往需要先求其通项公式,本文以各地考题中出现的有关递推数列的题目为例,介绍求递推数列的通项的常见方法,以供高考复习时的参考.一、化归法1.化为特殊数列:等差(比)数列例1(2002.汕头)已知数列{an}的前n项和为Sn,且满足a1=21,an=-2SnSn-1(n≥2).求an及Sn.分析关于通项an与前n项和Sn的关系式,常用an=S1,n=1,Sn-Sn-1,n≥2,将其转化为an的递推式,或转化为Sn的递推式,本题宜转化为Sn的递推式.解当n≥2时,由题设得Sn-Sn-1=-2SnSn-1,得S1n-S1n-1=2,这就是说S1n是以…  相似文献   

4.
2005年高考数学(文科)第22题为: 已知数列{an}的前n项和Sn满足Sn-Sn-2=3(-1/2)n-1(n≥3)且S1=1,S2=-3/2,求数列{an}的通项公式.  相似文献   

5.
设Sn是数列{an}的前n项和,n∈N.题型1:由an=S1 (n=1),求数列{an}的通项公式. Sn-Sn-1 (n≥2),题型1:由an=S1 (n=1),求数列{an}的通项公式. Sn-Sn-1 (n≥2)例1 在数列{an)中,a1 a2 … an=3n,求数列{an)的通项公式.  相似文献   

6.
以下是笔者通过对一道数列题改变一个数字进行探究,发现解法优美、内涵丰富、异彩纷呈,写下来与大家交流,希望能够给读者在递推数列解题方面带来一点启示.一、试题呈现题目1:已知数列{an}中,a1=1,an+1=2an+2n.(1)若bn=an2n-1,求证:{b}n是等差数列;(2)数列{an}的前n项和Sn.这是一道递推数列试题,第(1)问不难证明,第(2)问关键是求通项an.  相似文献   

7.
王怀学 《高中生》2010,(36):18-19
一、基本量法是求解数列通项公式最基本的方法例1已知等差数列{an}满足:a3=7,a5+a7=26,数列{an}的前n项和为Sn.(1)求an和Sn.  相似文献   

8.
<正>题目(2013年山东高考题)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n项和为Tn,且Tn+an+1/2n=λ(λ为常数),令cn=b2n(n∈N*),求数列{cn}的前n项和Rn.  相似文献   

9.
众所周知,等差数列{an}的通项公式an=a1+(n-1)d可变形写成:an=dn+(a1-d),这个式子的几何意义是点列An(n,an)(n∈N+)在直线y=dx+(a1-d)上.同样,等差数列{an}的前n项和公式sn=na1+n(n2-1)d可变形为:snn=a1+n-12d=2dn+(a1-2d),它也可看成是点列An(n,snn)在直线y=2dx+(a1-2d)上.于是得到以下两个结论:结论1等差数列{an}的通项公式an=a1+(n-1)d,则点(1,a1),(2,a2),(3,a3),…,(n,an)…共线.结论2等差数列{an}的前n项和sn=na1+n(n2-1)d,{sn}为等差数列的前n项和组成的数列,则点(1,s11),(2,s22),(3,s33),…,(n,snn)…共线.例1已知等差数列{an},a4=…  相似文献   

10.
1 提出问题 设各项均为正数的数列{an}的前n项和为Sn,已知a1=1,且(Sn+1+λ)an=(Sn+1)an+1对一切n∈N*都成立. (Ⅰ)若λ=1,求数列{an}的通项公式; (Ⅱ)求λ的值,使数列{an}是等差数列. 本题是2014年苏锡常镇四市高三数学情况调查(一)第19题,主要考查等比数列,数列的前n项和,递推关系及证明等差数列等基础知识与方法,考查考生的转化与化归、推理论证、思维与运算、分析问题与解决问题等能力.  相似文献   

11.
下面结合几个实例谈谈函数思想在数列问题中的应用 .一、函数的定义在数列中的应用【例 1】给出以下三个结论 :① {an}是等差数列的充要条件是an 是n的一次函数 .② {an}是等差数列的充要条件是其前n项和Sn 是n的二次函数 .③ {bn}是等比数列 ,则bn 是关于n的指数函数形式 ,其中正确的个数为 (   )(A) 0   (B) 1   (C) 2   (D) 3分析 :{an}是等差数列 ,其通项为an =a1 +(n -1)d =dn+a1 -d ,其前n项和Sn =na1 +n(n-1)d2 .当d=0时 ,an 不是n的一次函数 ,Sn 也不是n的二次函数 .因此①、②都不对 .不难证明 ,{an}是等差数列 an =an+…  相似文献   

12.
一、应注意公式an=Sn-Sn-1成立的条件 例1设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3^n,n∈N^*.  相似文献   

13.
在学习等差数列的过程中 ,我们辨证地来理解等差中项 ,以增强运用等差中项的意识 .一、若a ,A ,b成等差数列 ,则 2A =a+b【例 1】 已知a -1,a ,a2 +1成等差数列 ,求数列 {an}的通项公式an.解 :∵a-1,a ,a2 +1成等差数列 ,∴ 2a =(a-1) +(a2 +1) ,解得a =0或 1.当a =0时 ,a1 =-1,d =1,an =-1+(n -1) · 1=n -2 ;当a =1时 ,a1 =0 ,d =1,an =0 +(n-1) · 1=n-1.【例 2】 设 {an}是递增等差数列 ,前三项的和为 12 ,前三项的积为 48,求该数列的首项a1 .解 :∵等差数列 {an}前三项的和为 12 ,∴a1 +a2 +a3=3a2 =12 ,解得a2 =4.又前三项的积为 4…  相似文献   

14.
<正>1.设数列{an}是等差数列,且其首项为a1(a1>0),公差为2,前n项和为Sn,S11/2,S2(1/2),S31/2成等差数列。求数列{an}的通项公式。2.已知数列{an}、{bn}满足a1=2,2an=1+anan+1,bn=an-1,设数列{bn}的前n项和为Sn,令Tn=S2n-Sn。(1)求数列{...  相似文献   

15.
(2012年高考湖北理科卷)已知等差数列{an}前三项的和为-3,前三项的积为8.(Ⅰ)求等差数列{an}的通项公式;(Ⅱ)若a2,a3,a1,成等比数列,求数列{|an|}的前n项和.解析(Ⅰ)设等差数列{an}的公差为d,则a2=a1+d,  相似文献   

16.
1.分组某此既非等差,又非等比的数列,可拆开为等差数列、等比数列或常见的数列,分别求和. 例1 数列{an}的前n项和Sn=2an-1,数列{bn}满足b1=3,bn+1=an+bn(n∈N*). (1)证明数列{an}为等比数列; (2)求数列{bn}的前n项和Tn. 解(1)由Sn=2an-1,n∈N*,所以  相似文献   

17.
观察是有目的,有计划的知觉过程.只要善于变化观察角度,抓住要害特征,联系已有的知识与技能,就能产生解题方法.例1(2010年江苏省)设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{槡Sn}是公差为d的等差数列.(1)求数列{an}的通项公式(用n,d表示);  相似文献   

18.
根据数列{an}的前n项和Sn与an的关系an=Sn-Sn-1(n∈Z,n≥2)可知,凡是存在通项公式Sn=f(n)的递推公式Sn=a1+a2+…+an-1+an,  相似文献   

19.
“问道于零,受福无量”,这是数学教育家傅种孙的名言.“0”的特殊地位和重要作用众所周知.高中数学新教材采用(W.Gellert)公理体系,将0归为自然数类.可见0与1、2、3…等自然数的和谐与统一.数列{an}的前n项和Sn,当n≥2时,Sn表示前n项的和,当n=1时,Sn表示a1,而S0是没有实际意义的.通过下面的研究,便可发现S0的妙用. 例1 已知数列{an}的前n项和为Sn=n2,则an=_. 解n=1时,a1=S1=1;n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1. 又因为a1适合an=2n-1,所以an=2n-1(n ∈ N*).  相似文献   

20.
错在哪里     
1.数列{an}(n∈N*)的首项为14,前n项的和为Sn,点(an,an+1)在直线x-y-2=0上,则Sn的最大值为__.错解:由题意得an-an+1-2=0,则an+1-an=-2,即数列{an}是等差数列,且其首项为14,公差为-2,故Sn=14n+n(n-1)/2×(-2)=-(n-15/2)2+225/4,从而Sn的最大值为225/4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号