首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
青海省短时强降水(强暴雨)特征分析   总被引:2,自引:0,他引:2  
本文利用青海省48个自动气象站2004~2006年6~9月逐时降水资料,分析了青海短时强降水(强暴雨)的降水性质、持续时间、降水范围以及时空分布特征。结果表明:青海短时强降水(强暴雨)范围小、持续时间短、局地性强并伴有雷暴和冰雹等强对流天气,系统性天气造成的短时强降水较少;短时强降水的分布明显受到地形影响,降水次数自西北向东南呈阶梯性递增趋势,在东南部有一高值中心,在青海湖以东、青海南部地区各有一个次高值中心;青海的大到暴雨天气过程主要以短时强降水(强暴雨)为主;短时强降水(强暴雨)在盛夏的7-8月出现最多,且多发生在傍晚前后。  相似文献   

2.
本文利用常规气象观测资料、NCEP/NCAR(1°×1°)再分析资料及多普勒雷达数据对浙江北部地区2022年4月25日的一次强对流天气过程进行分析。结果表明:200 hPa高空急流、500 hPa槽、700 hPa切变线、地面热低压是此次天气过程的主要影响系统,强对流天气自西南向东北移动,先后影响杭州、湖州、嘉兴等浙江北部地区,影响范围广、持续时间较长。此次强对流天气过程发生在高空槽前、低层切变线南侧的强盛西南暖湿气流中,是由地面低压倒槽内的中尺度辐合线触发。由于湿层浅薄,水汽条件一般,此次强对流天气过程以雷暴大风天气为主,局地伴随短时暴雨和小冰雹。从雷达数据分析,强对流天气东移发展过程中可见弓形回波、速度模糊等雷暴大风天气特征,强对流天气伴随回波带的移出而结束。  相似文献   

3.
利用张家口雷达站(313)的新一代多普勒雷达产品、MICAPS常规气象观测及卫星云图资料,分析了2014年8月9日傍晚出现在锡林郭勒盟东南部地区(多伦县)的一次强对流天气过程。结果表明:这次天气是以短时强降水为主,伴随有冰雹、大风、雷电等强对流天气;此次强对流的主要影响系统为高空冷涡、低层切变线及地面辐合线,负3小时变压中心及较强的层结不稳定也有利于强对流天气的发生;反射率因子图显示系统为飑线,而在飑线中存在超级单体,径向速度图也表现出明显的中气旋特征;雷达产品分析表明,垂直液态水含量(VIL)和回波顶高度值(ET)对短时强降水和冰雹、雷电大风等强对流天气有很好的指示作用。  相似文献   

4.
本文依据青海湖环湖地区的海晏、刚察、共和、天峻四站1961~2008年地面气象资料,分析了气候变化对该地区极端天气气候事件的影响。结果表明:环湖地区年平均气温总体呈升高趋势,年降水量共和略有减少,海晏、刚察、天峻略有增加。大雨、霜日、春旱事件呈增加趋势,大风、沙尘、雷暴、冰雹事件呈减少趋势。气温与大雨存在明显的正相关,与沙尘、早霜存在明显的负相关。雷暴与大风、雷暴与冰雹、大风与沙尘存在高相关性。  相似文献   

5.
基于MICAPS第一类格式自动站资料,选取内蒙古自治区2013年~2015年典型强对流天气过程,运用天气学分析方法,对单站代表大气温、压、湿和风物理量进行了计算,分析其在强对流天气发生前的变化。研究表明:自动站要素的变化与冰雹或短时强降水发生有很好的对应关系。冰雹或短时强降水发生之前,温度露点差≤2℃,气压陡升和气温陡降,总温度下降剧烈,同时伴随偏南风。  相似文献   

6.
文章利用常规观测资料、探空资料、国家站和区域自动站逐小时降水资料,对2011年7月24日—25日内蒙古锡林郭勒盟出现的一次大暴雨天气过程进行分析研究。结果表明:大暴雨天气发生在有利的环流背景下,属于冷涡(槽)型,高空槽长时间影响锡林郭勒盟地区造成的。暴雨区上空整层湿度较大,LCL高度较低,暖云层达到3 km左右,易出现短时强降水;Cape值较小,0℃层和-20℃层位置偏高,中层有干空气侵入,垂直风切变指数较小,不利于冰雹、雷暴大风等强对流天气的出现;物理量场分析结果与暴雨区存在很好的对应关系。  相似文献   

7.
依据2016年~2020年青海东部地区15个国家气象站降水等资料及相对应探空资料,研究东部地区短时强降水时空分布情况及探空物理量的预报阈值.结果表明:(1)东部地区平均每年发生短时强降水4.2站次,年变化呈双峰式,其中一半以上发生在8月,且多发于午后;门源和大通是东部地区发生短时强降水最多的两个站.(2)发生短时强降水...  相似文献   

8.
杭州短时强降水特征分析及预报研究   总被引:8,自引:0,他引:8  
杨诗芳  郝世峰  冯晓伟  胡波 《科技通报》2010,26(4):494-500,545
利用杭州市近20年的1h雨量资料,分析了杭州短时强降水的发生规律,包括短时强降水的极值分布、年发生次数、月际分布、时段分布等气候特征。短时强降水雨量极值大多出现在台汛期间。杭州市短时强降水年发生次数的多年平均值为9.6次。杭州发生短时强降水的高峰期为7~8月。短时强降水容易发生在凌晨及午后两个时段。产生短时强降水的天气系统有:梅雨锋、西风带低槽、热带气旋、副高边缘西风急流、局地强对流系统等。本研究通过MM5模式产品得到各大气对流参数场及单点探空曲线,为预报短时强降水提供了新的思路。通过个例分析发现,在强对流天气发生前,各个大气对流参数场中心与短时强降水中心对应较好,杭州探空曲线反映了大气层结不稳定,有利于强对流天气发生。但是预报仅停留在定性和人工分析阶段,做出客观定量预报,并确定短时强降水的落区还有待进一步研究。  相似文献   

9.
本文对2004—2010年160站次青海省短时强降水资料分析表明,短时强降水随时间变化有逐年增加的趋势。东部农业区和青南地区出现短时强降水的次数最多,占年总次数的86%,且主要出现在5-9月。在空间分布上暴雨有两个多发中心:一个是地处青南高原东南部的久治、河南、同仁等地,另一个是位于青海省东部的湟中、西宁、大通、互助、化隆等地。造成短时强降水的主要高空环流形势有巴湖横槽型、两槽一脊型、西风气流多波动型、两高之间切变型和两脊一槽型。  相似文献   

10.
利用新一代天气雷达和常规观测资料,针对2016年~2017年发生的短时强降水和冰雹天气中雷达回波参数、环境参数进行统计归纳,建立了这两种强对流天气的相应的参数指标。可以得出:发生短时强降水天气时的大气环境中不稳定能量的储蓄时间较长,对于环境参数的要求相较于冰雹天气要更加严格;而冰雹天气的雷达回波指标要比短时强降水天气的更加精细;对于选取的预报指标进行的回报检验中,预报准确率达73%;针对2018年7月15日~16日的暴雨天气过程进行指标检验,得出选取的预报指标能够应用于日常临近预报业务中。  相似文献   

11.
利用实况资料对2016年7月23日出现在甘肃省中部的一次强对流天气过程进行了诊断分析,得出以下结论:副高、500hPa的高原槽、700hPa的切变线和低空急流,是此次天气过程的主要影响系统。CAPE、K指数和抬升指数反映,强对流落区具有较强的热力不稳定,但由于CAPE值不是很大,700hPa与500hPa的温度差也不大,因此相应的热力不稳定条件不利于冰雹和雷暴大风的出现,只利于强降水的出现。强对流落区的中低层水汽充沛、湿层较厚,低层具有较强的水汽辐合,从而具有有利于强降水出现的水汽条件。700hPa的切边线提供了产生强对流所需的动力抬升。低层辐合、高层辐散的散度场配置,中低层的垂直速度为负值,说明存在有利于强对流出现的动力条件。  相似文献   

12.
利用1965年-2000年梅州市七个县市气候资料,对大风、冰雹、雷暴和暴雨4种强对流天气气候特征进行统计分析。结果表明:大风天气年际变化明显,以4.6站次/10年的速率减少;主要发生在3月-9月,呈双峰变化,主峰在7月份,次峰在4月份。冰雹天气共发生21站次;季节性强,多发生在3、4月份,占冰雹总站次的81%。雷暴年际变化明显,以5.5日/10年的速率减少;多发生在4月-9月,呈单峰变化,最多在8月。暴雨日年平均4.4日,年际变化较大,多发生在3月-10月份,呈双峰型变化,8月最多;大暴雨发生在5月-10月,8月最多。  相似文献   

13.
根据2011年~2021年5月~9月青海黄南南部区域内25个自动气象观测站(包括区域站)逐时降雨量资料,利用Arcgis、Excel、SPSS等数据处理软件,分析该地区短时强降雨时空分布特征及其对有机畜牧业的影响。结果表明:(1)近11年来,黄南南部短时强降雨分布不均,1 h降雨量≥20 mm出现59站次,3 h降雨量≥40 mm出现15站次,随年份均呈波动状略增多趋势;7月、8月是短时强降雨出现频次最多时段,也是造成山洪、滑坡、泥石流及塌陷等次生灾害的关键时期;日变化特征明显,下午、前半夜是短时强降雨多发时段,后半夜及上午出现几率很小,在日常预报预测工作中难度大。(2)极端最大1 h降雨量≥50 mm和3 h降雨量≥60 mm主要出现在河南县城、多松乡、托叶玛乡和泽库县宁秀乡,表明该地区短时强降雨持续时间短、强度大,而且频发、重发概率大,符合中小尺度天气特征。(3)短时强降雨常伴有雷暴大风、冰雹等恶劣天气,易造成风灾、雷电、雹灾以及山洪、滑坡、泥石流等次生灾害,对当地有机畜牧业生产、人民生命财产安全构成严重威胁,甚至遭成严重的经济损失。(4)针对短时强降雨天气,气象部门应加强对短时强...  相似文献   

14.
本文利用天气实况资料、卫星云图资料及自动站观测资料,分析了2009年6月18日乌兰地区出现的强冰雹天气过程。此次冰雹天气发生在西太平洋副热带高压西伸的背景下,其外围的西南气流稳定维持,为西藏西部及青海海西中东部地区输送大量水汽和不稳定能量,高原地区的地表辐射加热也促进了低层的能量积累;西藏西部、青海南部地区午后形成的对流云,随着副热带高压外围西南气流向东北方向移动,在移动过程中发展加强,造成了海西中东部地区出现强对流天气。  相似文献   

15.
青海东部两次大到暴雨天气卫星云图及产品对比分析   总被引:1,自引:0,他引:1  
本文对2009年6月18日下午至夜间和2009年8月17日夜间在青海东部地区发生的两次大到暴雨天气,从影响系统、卫星云图及产品方面进行了对比分析。结果表明:天气尺度的冷空气是大到暴雨天气发生的前提和条件,两次天气过程的红外卫星云图特征不同,造成的天气也不尽相同,"6.18"过程的卫星云图呈团状,具有暴雨云团的特征,云团所经的区域出现了大风、冰雹和区域性的大到暴雨天气,"8.17"过程的卫星云图呈带状,云团所经的区域出现了大风、冰雹和不均匀的短时大到暴雨天气。  相似文献   

16.
利用1999~2017年三江源核心区5个国家基准基本站气象观测资料,分析了三江源核心区冰雹、寒潮、大雨、大雪、大风等主要气象灾害性天气的特征,并通过线性倾向方法对历年的发生发展趋势进行了分析。结果表明:1999~2017年三江源核心区的冰雹灾害呈减少趋势,且主要集中在夏季的6~9月份。寒潮灾害呈平稳变化趋势,与每年冷空气活动的关系较为密切,且主要发生在1月份;大雪灾害主要发生在每年5月份和来年10月份,从历年大雪发生的趋势来年,呈现增加的趋势;大风的分布具有明显的地域特征,最大集中在12月份~次年3月份,从趋势线分析大风具有逐年增加的趋势。  相似文献   

17.
利用常规气象资料、区域自动站资料、FY——2D卫星资料及雷达资料等,对2012年6月24日~28日锡林郭勒盟持续强降雨天气过程进行诊断分析。分析表明:23日~26日强对流活动频繁,在有利的大尺度环流背景形势下,中小尺度系统的形成是短时强降水产生的原因;27日~28日产生了区域暴雨天气,贝加尔湖的高空冷涡分裂出来的冷槽、700hPa南支气流及河套倒槽的建立是暴雨天气的直接影响系统。  相似文献   

18.
为了探讨不同环境条件造成青海乐都两次短时强降水的原因,本文以发生在青海乐都的两次降水过程,即2014年6月3日区域对流性降水和2014年7月25日单点对流性降水为例,利用常规观测资料、NCEP 1°×1°再分析资料,对比分析环境条件。结果表明:1."6.03"和"7.25"短时强降水天气过程环流形势分别为冷槽型和西北气流型,高空槽携带的正涡度平流及冷平流为短时强降水提供了有利条件,地面干线是短时强降水天气触发机制;2.低槽、切变线、地面辐合线、地面干线、高位涡中心叠置区与强降水区有较好的对应关系;3."6.03"和"7.25"过程层结特征阈值:850h Pa和500h Pa假相当位温差17℃以上,总指数44,威胁指数166以上,假相当位温大于366K,抬升凝结高度747m以上,对流有效位能857 J/kg以上,锋生条件84以上;4."6.03"区域性对流降水所需的水汽条件和动力条件高于"7.25"单点对流性降水,而"7.25"单点对流性降水热力条件好于"6.03"区域性对流降水,单点强降水需要储存较高的热量才能触发强对流天气。  相似文献   

19.
利用再分析资料、地面观测数据和新一代单站雷达资料对2015年8月6日发生在江苏地区的一次大范围强对流过程从多个角度对其进行了诊断分析。研究表明:地面飑线是本次强对流天气的直接影响系统。本次过程发生在高空槽东移,副高西伸北抬的过程之中,高空干冷,低层暖湿;飑线过境前后风向突变、风力猛增、气压涌升、气温急降、相对湿度大幅上升;地面能量堆积,中低层存在能量锋区,气层处于不稳定状态,低层强烈的垂直上升速度,水汽通量散度低层辐合高层辐散,这些因素都为强降水提供了有利的条件;雷达回波显示,六合地区雷暴单体的右侧有明显的阵风锋,同时在回波的左前方有明显弱窄带回波,对应雷暴单体后侧的出流边界,强风速带紧贴雷暴单体的右前方,后侧辐散区域对应雷暴内部冷下沉气流在地面扩散和暖空气交汇后形成的一道飑锋,垂直方向可以观察到质心迅速下降,这些特征对灾害性大风的预报有很好的指示意义。  相似文献   

20.
统计了鄂尔多斯市1971年~2016年11个气象站46年实测的大风、扬沙、沙尘暴资料,详细分析了鄂尔多斯市大风沙尘天气的时空变化特征。结果表明:近46年来鄂尔多斯市大风沙尘天气呈现逐步减少的趋势;在空间分布上,鄂尔多斯市大风日数从西北部向两侧呈现逐步减少趋势,扬沙和沙尘暴多发地区主要位于西部和南部地区的沙漠与沙地;从年代变化特征来看,20世纪70年代鄂尔多斯市各地区均为大风沙尘多发年代,之后各个年代大风沙尘的发生次数呈现逐步减少的趋势,但在21世纪以来,伊和乌素站发生大风、扬沙的次数有增加的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号