首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the development of preservice science teachers’ knowledge structures in the domain of oxidation and reduction chemistry. Knowledge structures were elicited through video-recorded semi-structured interviews before and after the unit of instruction, and analyzed using a visual flow map representation. Paralleling these interviews, the preservice teachers were tasked with diagnosing middle school students’ scientific understandings. Data analyzed quantitatively and qualitatively showed large variation in knowledge structure complexity across the preservice teachers, strong correlations between measures of knowledge structure and diversity (as defined by the Shannon Wiener diversity index), and the development of more balanced knowledge structure representations. For most preservice teachers, their diagnostic scores of the middle school students showed a small increase.  相似文献   

2.
Teachers routinely make decisions regarding the best pedagogical methods for altering students’ understandings about academic content. Such practices are at the root of teaching as persuasion, and have been shown to be related to academic achievement. Yet very little research has investigated the extent to which individuals learning to be teachers (i.e., preservice teachers) feel they are capable of performing the practices underlying teaching as persuasion. As such, the purpose of this study was to examine the extent to which preservice teachers see themselves as capable of performing persuasive pedagogical practices compared to more general teaching practices as operationalized on well-researched measures of teacher efficacy. Results indicated that undergraduates enrolled in preservice teacher education courses perceived themselves as less capable of performing persuasive pedagogical practices than more generally accepted practices. In addition, preservice teachers perceived they were more capable of altering students’ knowledge about content than at modifying their beliefs about content. Implications for research and practice are forwarded.  相似文献   

3.
This paper reports on a study of elementary preservice teachers’ inquiry-based practices, their efficacy beliefs, and the role beliefs had on two preservice teachers’ practices in urban classrooms. Results show inquiry-based practices can be cultivated through field-based experiences and preservice teachers’ efficacy beliefs, as it relates to practice in urban settings, are malleable. Specifically, personal efficacy beliefs about teaching science improved or were sustained for one cohort of preservice teachers. However, beliefs about students’ ability to learn science, that is outcome beliefs, were less stable. The results of two case studies show that science content knowledge was a factor in preservice teachers’ inquiry-based practices. However, why preservice teachers’ beliefs about student learning declined is less clear. More research is needed, along with follow-up data on teacher induction, to learn how preservice teachers’ beliefs impact urban students’ science education.  相似文献   

4.
Field trips are ideal for increasing students’ experience and perceptions of various organisms and their relationship between the original habitat. However, in general field trips are greatly neglected by teachers and their short-term effects are thought to be questionable. Therefore, we conducted a one-day field trip for both improving students’ knowledge in ecology and for examining short-term effects. Based on the results of the research conducted 3 days after the trip, we found a significant and positive increase in students’ attitudes toward biology, natural environment outside and future career in biology. Moreover, students displayed a better understanding of ecology concepts like ecosystems and food webs. However, no similar pattern was observed for the control group experienced only traditional biology settings. Thus, this study is unique showing significant short-term effects of a field trip on students’ attitude and knowledge toward biology.  相似文献   

5.
Although clean, potable groundwater constitutes one of our most valuable resources, few students or science educators hold complete and appropriate understandings regarding the concept. Recent studies that focus on secondary students’ and preservice science teachers’ understandings of groundwater found little difference between the groups’ conceptualizations of subsurface hydrology. This article discusses possible reasons for the apparent lack of appropriate understanding regarding the complex concept of groundwater. Specifically, we concentrate on the lack of emphasis concerning groundwater content in standards documents, the need for increased attention to students’ spatial reasoning abilities, inadequate formal instruction for science teachers concerning groundwater, and difficulty in designing appropriate assessment of groundwater concepts. We conclude by offering suggestions for enhancing the teaching and learning of groundwater.  相似文献   

6.
The study examined (a) the extent to which teachers and preservice teachers understand the concept of energy and adhere to particular preconceptions associated with it; and (b) their ability to predict pupils’ knowledge and understanding of the same concept. Teachers and preservice teachers completed a test by indicating for each item what their response was and what an average sixth-grade pupil’s response might have been, and their predictions were compared to actual pupil performance. Results indicated that teachers’ and preservice teachers’ understanding of the concept was far from complete, and that teachers were, in general, more likely to overestimate pupils’ knowledge.  相似文献   

7.
In Uganda, curbing the spread of HIV/AIDS has largely depended on public and private media messages about the disease. Media campaigns based on Uganda’s cultural norms of communication are metaphorical, analogical and simile-like. The topic of HIV/AIDS has been introduced into the Senior Three (Grade 11) biology curriculum in Uganda. To what extent do students’ pre-conceptions of the disease, based on these media messages influence students’ development of conceptual understanding of the disease, its transmission and prevention? Of significant importance is the impact the conceptions students have developed from the indirect media messages on classroom instruction on HIV/AIDS. The study is based in a theoretical framework of conceptual change in science learning. An interpretive case study to determine the impact of Ugandan students’ conceptions or perceptions on classroom instruction about HIV/AIDS, involving 160 students aged 15–17, was conducted in four different Ugandan high schools: girls boarding, boys boarding, mixed boarding, and mixed day. Using questionnaires, focus group discussions, recorded biology lessons and informal interviews, students’ preconceptions of HIV/AIDS and how these impact lessons on HIV/AIDS were discerned. These preconceptions fall into four main categories: religious, political, conspiracy and traditional African worldviews. Results of data analysis suggest that students’ prior knowledge is persistent even after biology instructions. This has implications for current teaching approaches, which are mostly teacher-centred in Ugandan schools. A rethinking of the curriculum with the intent of offering science education programs that promote understanding of the science of HIV/AIDS as opposed to what is happening now—insensitivity to misconceptions about the disease—is needed.  相似文献   

8.
For an educational reform to succeed, teachers need to adjust their perceptions to the reform’s new curricula and strategies and cope with new content, as well as new teaching and assessment strategies. Developing students’ scientific literacy through context-based chemistry and higher order thinking skills was the framework for establishing a new chemistry curriculum for Israeli high school students. As part of this endeavor, we developed the Taste of Chemistry module, which focuses on context-based chemistry, chemical understanding, and higher order thinking skills. Our research objectives were (a) to identify the challenges and difficulties chemistry teachers faced, as well as the advantages they found, while teaching and assessing the Taste of Chemistry module; and (b) to investigate how they coped with teaching and assessing thinking skills that include analyzing data from graphs and tables, transferring between multiple representations and, transferring between chemistry understanding levels. Research participants included eight teachers who taught the module. Research tools included interviews, classroom observations, teachers-designed students’ assignments, and developers-designed students’ assignments. We documented different challenges teachers had faced while teaching the module and found that the teachers developed different ways of coping with these challenges. Developing teachers’ assessment knowledge (AK) was found to be the highest stage in teachers’ professional growth, building on teachers’ content knowledge (CK), pedagogy knowledge (PK), and pedagogical-content knowledge (PCK). We propose the use of assignments designed by teachers as an instrument for determining their professional growth.  相似文献   

9.
This article presents the findings of an international collaborative investigation into preservice teachers’ views on the nature of scientific knowledge development with respect to six elements: observations and inferences, tentativeness, scientific theories and laws, social and cultural embeddedness, creativity and imagination, and scientific methods. A total of 640 preservice teachers, 209 from the United States, 212 from China, and 219 from Turkey, participated in the study. The survey “Student Understanding of Science and Scientific Inquiry (SUSSI)”, having a blend of Likert-type items and related open-ended questions, was used to gain a fuller understanding of the preservice teachers’ views of the nature of scientific knowledge development. Across the three countries, the participants demonstrated better understanding of the tentative NOS aspect but less understanding of the nature of and relationship between scientific theories and scientific laws. The Chinese sample scored highest on five of the six Likert sub-scales, the USA sample demonstrated more informed views on observation and inference, and the Turkish preservice teachers possessed relatively more traditional views in all six NOS aspects. Conclusions and limitations of the present study as well as implications and recommendations for future studies, are also discussed.  相似文献   

10.
Multicultural education, pragmatism, and the goals of science teaching   总被引:1,自引:1,他引:0  
In this paper, we offer an intermediate position in the multiculturalism/universalism debate, drawing upon Cobern and Loving’s epistemological pluralism, pragmatist philosophies, Southerland’s defense of instructional multicultural science education, and the conceptual profile model. An important element in this position is the proposal that understanding is the proper goal of science education. Our commitment to this proposal is explained in terms of a defense of an ethics of coexistence for dealing with cultural differences, according to which social argumentative processes—including those in science education—should be marked by dialogue and confrontation of arguments in the search of possible solutions, and an effort to (co-)live with differences if a negotiated solution is not reached. To understand the discourses at stake is, in our view, a key requirement for the coexistence of arguments and discourses, and the science classroom is the privileged space for promoting an understanding of the scientific discourse in particular. We argue for “inclusion” of students’ culturally grounded ideas in science education, but in a sense that avoids curricular multicultural science education, and, thus, any attempt to broaden the definition of “science” so that ideas from other ways of knowing might be simply treated as science contents. Science teachers should always take in due account the diversity of students’ worldviews, giving them room in argumentative processes in science classrooms, but should never lose from sight the necessity of stimulating students to understand scientific ideas. This view is grounded on a distinction between the goals of science education and the nature of science instruction, and demands a discussion about how learning is to take place in culturally sensitive science education, and about communicative approaches that might be more productive in science classrooms organized as we propose here. We employ the conceptual profile model to address both issues. We expect this paper can contribute to the elaboration of an instructional multicultural science education approach that eliminates the forced choice between the goals of promoting students’ understanding of scientific ideas and of empowering students through education.
Eduardo Fleury MortimerEmail:
  相似文献   

11.
Studies show that extending students’ mathematical thinking during whole-group discussions is a challenging undertaking. To better understand what extending student thinking looks like and how teachers’ mathematical knowledge for teaching (MKT) supports teachers in their efforts to extend student thinking, the teaching of six experienced elementary school teachers was explored. During group discussions, all six teachers created opportunities for extending student thinking about important mathematical ideas and solution methods. Findings on the nature of these episodes include identification of individual instructional actions and the ways in which teachers’ MKT was connected to these actions.  相似文献   

12.
There is a documented need for more opportunities for teachers to learn about students’ mathematical reasoning. This article reports on the experiences of a group of elementary and middle school mathematics teachers who participated as interns in an after-school, classroom-based research project on the development of mathematical ideas involving middle-grade students from an urban, low-income, minority community in the United States. For 1 year, the teachers observed the students working on well-defined mathematical investigations that provided a context for the students’ formation of particular mathematical ideas and different forms of reasoning in several mathematical content strands. The article describes insights into students’ mathematical reasoning that the teachers were able to gain from their observations of the students’ mathematical activity. The purpose is to show that teachers’ observations of students’ mathematical activity in research sessions on students’ development of mathematical ideas can provide opportunities for teachers to learn about students’ mathematical reasoning.  相似文献   

13.
The article builds upon a study where students’ relations to science are related to their worldviews and the kind of worldviews they associate with science. The aim of the study is to deepen our knowledge of how worldview and students’ ways to handle conflicts between their own worldview and the worldview they associate with science, can add to our understanding of students’ relations to science. Data consists of students’ responses to a questionnaire (N = 47) and to interviews (N = 26). The study shows that for students who have a high ability in science, those who have taken science-intense programmes in upper secondary school to a higher extent than others have worldviews in accordance with the worldviews they associate with science. This indicates that students who embrace a worldview different from the one they associate with science tend to exclude themselves from science/technology programmes in Swedish upper secondary school. In the article the results are presented through case studies of single individuals. Those students’ reasoning is related to the results for the whole student group. Implications for science teaching and for further research are discussed.  相似文献   

14.
15.
16.
For the last two decades science education researchers have had a major interest in identifying students’ intuitive understanding of a wide range of scientific topics and in reducing the difficulties involved when an attempt is made to replace these views by scientific understanding. Different approaches to this latter problem have been adopted by researchers, with strategies ranging from the pragmatic and atheoretical to those with a stronger theoretical foundation, usually based on some form of constructivism. In this paper we report on a novel theoretical perspective which takes as its foundation the psychological research of about three decades ago which investigated “forgetting,” and the important effects of previous knowledge in this process. In particular this new perspective demonstrates that, under normal teaching conditions, and through the process of proactive inhibition, the student’s prior knowledge can accelerate the forgetting of the newly taught scientific ideas. The paper first develops the theoretical position and then shows that a change in teaching approach can take advantage of the differences between the students’ prior understanding and the scientific view to ensure more efficient replacement. Following this an overview of the new methodology, as it is currently being used on a trial basis by science teachers in South Australia, is briefly introduced.  相似文献   

17.
18.
Aligned with recent changes to syllabuses in Australia is an assessment regime requiring teachers to identify what their students ‘know’ and ‘can do’ in terms of the quality of understanding demonstrated. This paper describes the experiences of 25 secondary science and mathematics teachers in rural schools in New South Wales as they explore the changing nature of assessment and its implications on their classroom practice. To help reconceptualise these changes, teachers were introduced to a cognitive structural model as a theoretical framework. Throughout the 2-year study, teachers attended a series of professional development sessions and received ongoing consultative support. Each session was taped and transcribed while interviews were conducted with each teacher at the end of both years. Analysis of these data using a grounded theory approach identified seven major components of teacher practice impacted by the study. The core component was questioning while the six contributing components were teachers’ pedagogical practices, attention to cognition, teaching strategies, assessment linked to pedagogy, classroom advantages for students, and classroom advantages for teachers. These findings represent a major shift in teachers’ perceptions of assessment from a focus on the accumulation of students’ marks to one of diagnosis as a means of directing teaching to enhance students’ scientific and mathematical understandings.  相似文献   

19.
As student–teacher–scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student–teacher–scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students’ access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs.  相似文献   

20.
Due to a growing trend of exploring scientific knowledge on the Web, a number of studies have been conducted to highlight examination of students’ online searching strategies. The investigation of online searching generally employs methods including a survey, interview, screen-capturing, or transactional logs. The present study firstly intended to utilize a survey, the Online Information Searching Strategies Inventory (OISSI), to examine users’ searching strategies in terms of control, orientation, trial and error, problem solving, purposeful thinking, selecting main ideas, and evaluation, which is defined as implicit strategies. Second, this study conducted screen-capturing to investigate the students’ searching behaviors regarding the number of keywords, the quantity and depth of Web page exploration, and time attributes, which is defined as explicit strategies. Ultimately, this study explored the role that these two types of strategies played in predicting the students’ online science information searching outcomes. A total of 103 Grade 10 students were recruited from a high school in northern Taiwan. Through Pearson correlation and multiple regression analyses, the results showed that the students’ explicit strategies, particularly the time attributes proposed in the present study, were more successful than their implicit strategies in predicting their outcomes of searching science information. The participants who spent more time on detailed reading (explicit strategies) and had better skills of evaluating Web information (implicit strategies) tended to have superior searching performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号