首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
论《简·爱》的宗教倾向   总被引:1,自引:0,他引:1  
在西欧,基督教精神作为西方主体文化之一,弥漫于社会各个角落,渗透于人们的深层意识,潜移默化地影响着人们的人生态度和言谈举止。《简·爱》作为这种意识的载体,不可避免地秉承了宗教的基因。小说1847年问世时,首先引起非难的,也是作者最先为之辩护的就是宗教倾向问题。当时,某些宗教保守派的报刊载文对《简·爱》的宗教倾向严词苛责。伊丽莎·里格比在《每季评论》上撰文,谴责《简·爱》“是一部突出的反基督教作品”。夏绿蒂在小说的二版序言中,进行了切中时  相似文献   

2.
怎样看待西方自然科学家的“宗教感情”──与蒋四清同志商榷周吉友蒋四清同志在《宗教是科学的死敌吗?》(载《中学政治教学参考》1996年第5期)一文分析了宗教对科学在特定条件下的积极作用,令人耳目一新。文中还谈到:“近现代许多著名科学家,如刻卜勒、牛顿、...  相似文献   

3.
艾尔曼在新作《科学在中国:1550—1900》中描绘了耶稣会时期和新教时期中国的科学图景。其中既有科学来中国的过程与表现,也涉及科学与宗教的关系。中国在1550—1900年间同时经历了科学来中国和科学在中国,以中国人自己的方式的科学在中国被以西方人方式的科学所不断冲击,最终演变为以西方人方式的科学在中国。  相似文献   

4.
在科学与宗教的关系问题上,“冲突论”一直占据着主导地位。目前,这种观点遭到了以巴伯、布鲁克和康托尔等为代表的西方学者的广泛质疑与批判,反冲突论思潮盛行一时。不过,当代反冲突论在批判过程中又走到了另一个极端。即使在今天,“冲突论”在一定的意义上仍然是可以成立的。  相似文献   

5.
科学与宗教之间存在本质差异。不同的宗教由于是在不同的文化土壤上诞生的,因而它们对科学也采取了不同的态度。西方科学与基督教之间既有对立的一面,也有相互促进的一面,对维持西方社会的稳定,促进其发展而言,它们是互补的,是缺一不可的。  相似文献   

6.
本从《金枝精要》出发,梳理了巫术、宗教、科学的相关理论,回顾了《金枝精要》中巫术理论在中国社会科学界的应用事例,以此来重新认识巫术、宗教与科学的关系。  相似文献   

7.
本文通过对比西方宗教学家对宗教定义的描述,指出了宗教与科学在追求真善关方面的一致性,说明了宗教与科学虽然有着对立复杂的关系,但同时有着彼此相互促进和互补的关系,强调理性精神是沟通宗教与科学的桥梁,宗教与科学在一定阶段和层面上可以和谐共处.  相似文献   

8.
科学和宗教并非是单一的关系,从西方社会历史进程来看,科学与宗教之间是一种发展着的变动关系。在古希腊罗马时期,科学与宗教是水乳交融的同一关系;在中世纪,宗教一方面统治和压制科学,另一方面促进科学的发展,近代科学就是在中世纪基督教文化中孕育发展起来的。  相似文献   

9.
西方科学家的宗教信仰问题   总被引:1,自引:0,他引:1  
一、西方科学家宗教信仰的一般考察在历史上,科学与宗教(基督教)有过激烈的冲突,宗教和科学本质上是对立的;但是,尽管如此,在西方世界,仍有许多科学家,包括某些非常著名的科学家都不同程度或在不同意义上信仰宗教。例如,《天体运行论》一书的作者、波兰天文学家哥白尼(1473—  相似文献   

10.
科学哲学中研究科学与宗教的关系,是反思科学活动的基础、反思科学研究的成果、反思科学发展的逻辑、反思时代的科学精神、反思科学的社会功能之需要。对科学进行哲学反思时,不应忽视科学与其他文化样式的关系,尤其是与宗教的关系。在研究科学哲学中,应当避免一种轻率的态度,即轻言科学将完全战胜宗教甚至取代宗教以及轻言宗教将消亡。  相似文献   

11.
12.
科学教育:过去,现在和未来   总被引:4,自引:0,他引:4  
一百年来,现实的吁求,政治经济问题的直接充当了我们科学教育的思维起点,以至从过去到现在一直都没有形成健全的民族科学教育理念,使科学意识并没有深入民族文化心理之中,未来的科学教育必须在充分反思教育与科学自身处境的基础上,协调科学教育与社会发展的关系,处理好科学与人文、科学文化与民族心理、心智训练与知识掌握、普及与提高、尊重科学与唯科学主义之间的紧张与冲突,以谋求自身乃至民族的健康发展。  相似文献   

13.
14.
Our short-term longitudinal study explored undergraduate students' experiences with performing authentic science practices in the classroom in relation to their science achievement and course grades. In addition, classroom experiences (felt recognition as a scientist and perceived classroom climate) and changes over a 10-week academic term in STEM (science, technology, engineering, and mathematics) identity and motivation were tested as mediators. The sample comprised 1,079 undergraduate students from introductory biology classrooms (65.4% women, 37.6% Asian, 30.2% White, 25.1% Latinx). Using structural equation modeling (SEM), our hypothesized model was confirmed while controlling for class size and GPA. Performing science practices (e.g., hypothesizing or explaining results) positively predicted students' felt recognition as a scientist; and felt recognition positively predicted perceived classroom climate. In turn, felt recognition and classroom climate predicted increases over time in students' STEM motivation (expectancy-value beliefs), STEM identity, and STEM career aspirations. Finally, these factors predicted students' course grade. Both recognition as a scientist and positive classroom climate were more strongly related to outcomes among underrepresented minority (URM) students. Findings have implications for why large-format courses that emphasize opportunities for students to learn science practices are related to positive STEM outcomes, as well as why they may prove especially helpful for URM students. Practical implications include the importance of recognition as a scientist from professors, teaching assistants, and classmates in addition to curriculum that engages students in the authentic practices of science.  相似文献   

15.
自科学发展现理论提出以来,对科学发展的理论研究与贯彻落实不断深入,高潮迭起。但在全国上下树立和落实科学发展观的浪潮中,不论是在思想认识上,还是在具体实践上,都存在一些偏差。文章将针对这些偏差,通过对科学发展现历史性、科学性及抽象性的论述,为更好、更快地树立和落实科学发展观作出一点反思与探索。  相似文献   

16.
Recent research has challenged traditional assumptions that scientific practice and knowledge are essentially individual accomplishments, highlighting instead the social nature of scientific practices, and the co‐construction of scientific knowledge. Similarly, new research paradigms for studying learning go beyond focusing on what is “in the head” of individual students, to study collective practices, distributed cognition, and emergent understandings of groups. These developments require new tools for assessing what it means to learn to “think like a scientist.” Toward this goal, the present case study analyzes the discourse of a 6th‐grade class discussing one student's explanation for seasonal variations in daylight hours. The analysis identifies discourse moves that map to disciplinary practices of the social construction of science knowledge, including (1) beginning an explanation by reviewing the community's shared assumptions; (2) referencing peers' work as warrants for an argument; and (3) building from isolated ideas, attributed to individuals, toward a coherent situation model, attributed to the community. The study then identifies discourse moves through which the proposed explanation was taken up and developed by the group, including (4) using multiple shared representations; (5) leveraging peers' language to clarify ideas; and (6) negotiating language and representations for new, shared explanations. Implications of this case for rethinking instruction, assessment, and classroom research are explored. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:619–642, 2010  相似文献   

17.
18.
In this research project, we investigated two beginning secondary science teachers' efforts to learn to teach science in ways that build from and celebrate the ethnic, gender, linguistic, and academic diversity of their students. To do so, we followed Troy and Brian from their preservice teacher education experiences through their first year of teaching 8th grade physical science at local junior high schools. We also conducted a follow‐up observation and interview with each participant after he had moved past the beginning stage of survival in the teaching profession—once in his fourth year of public school science teaching. Through qualitative analysis of interviews, classroom observations, and teachers' written work, we identified patterns and explored commonalities and differences in Troy and Brian's views and practices tied to equity over time. In particular, we examined successes and challenges they encountered in learning to teach science for all (a) from their students, (b) from inquiry into practice, and (c) from participation in professional communities. In our implications, we suggest ways teacher educators and induction professionals can better support beginning teachers in learning to teach science to all students. In particular, we highlight the central roles both individual colleagues and collective school cultures play in aiding or impeding beginning teachers' efforts to learn from students, from practice, and from professional communities. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 586–612, 2007.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号