首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In practice, models always have misfit, and it is not well known in what situations methods that provide point estimates, standard errors (SEs), or confidence intervals (CIs) of standardized structural equation modeling (SEM) parameters are trustworthy. In this article we carried out simulations to evaluate the empirical performance of currently available methods. We studied maximum likelihood point estimates, as well as SE estimators based on the delta method, nonparametric bootstrap (NP-B), and semiparametric bootstrap (SP-B). For CIs we studied Wald CI based on delta, and percentile and BCa intervals based on NP-B and SP-B. We conducted simulation studies using both confirmatory factor analysis and SEM models. Depending on (a) whether point estimate, SE, or CI is of interest; (b) amount of model misfit; (c) sample size; and (d) model complexity, different methods can be the one that renders best performance. Based on the simulation results, we discuss how to choose proper methods in practice.  相似文献   

2.
Confidence intervals (CIs) for parameters are usually constructed based on the estimated standard errors. These are known as Wald CIs. This article argues that likelihood-based CIs (CIs based on likelihood ratio statistics) are often preferred to Wald CIs. It shows how the likelihood-based CIs and the Wald CIs for many statistics and psychometric indexes can be constructed with the use of phantom variables (Rindskopf, 1984 Rindskopf, D. 1984. Using phantom and imaginary latent variables to parameterize constraints in linear structural models. Psychometrika, 49: 3747. [Crossref], [Web of Science ®] [Google Scholar]) in some of the current structural equation modeling (SEM) packages. The procedures to form CIs for the differences in correlation coefficients, squared multiple correlations, indirect effects, coefficient alphas, and reliability estimates are illustrated. A simulation study on the Pearson correlation is used to demonstrate the advantages of the likelihood-based CI over the Wald CI. Issues arising from this SEM approach and extensions of this approach are discussed.  相似文献   

3.
Taxometric procedures such as MAXEIG and factor mixture modeling (FMM) are used in latent class clustering, but they have very different sets of strengths and weaknesses. Taxometric procedures, popular in psychiatric and psychopathology applications, do not rely on distributional assumptions. Their sole purpose is to detect the presence of latent classes. The procedures capitalize on the assumption that, due to mean differences between two classes, item covariances within class are smaller than item covariances between the classes. FMM goes beyond class detection and permits the specification of hypothesis-based within-class covariance structures ranging from local independence to multidimensional within-class factor models. In principle, FMM permits the comparison of alternative models using likelihood-based indexes. These advantages come at the price of distributional assumptions. In addition, models are often highly parameterized and susceptible to misspecifications of the within-class covariance structure.

Following an illustration with an empirical data set of binary depression items, the MAXEIG procedure and FMM are compared in a simulation study focusing on class detection and the assignment of subjects to the latent classes. FMM generally outperformed MAXEIG in terms of class detection and class assignment. Substantially different class sizes negatively impacted the performance of both approaches, whereas low class separation was much more problematic for MAXEIG than for the FMM.  相似文献   

4.
Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study population. This article presents the results of a simulation study that examines the performance of likelihood-based tests and the traditionally used Information Criterion (ICs) used for determining the number of classes in mixture modeling. We look at the performance of these tests and indexes for 3 types of mixture models: latent class analysis (LCA), a factor mixture model (FMA), and a growth mixture models (GMM). We evaluate the ability of the tests and indexes to correctly identify the number of classes at three different sample sizes (n = 200, 500, 1,000). Whereas the Bayesian Information Criterion performed the best of the ICs, the bootstrap likelihood ratio test proved to be a very consistent indicator of classes across all of the models considered.  相似文献   

5.
Valuable methods have been developed for incorporating ordinal variables into structural equation models using a latent response variable formulation. However, some model parameters, such as the means and variances of latent factors, can be quite difficult to interpret because the latent response variables have an arbitrary metric. This limitation can be particularly problematic in growth models, where the means and variances of the latent growth parameters typically have important substantive meaning when continuous measures are used. However, these methods are often applied to grouped data, where the ordered categories actually represent an interval-level variable that has been measured on an ordinal scale for convenience. The method illustrated in this article shows how category threshold values can be incorporated into the model so that interpretation is more meaningful, with particular emphasis given to the application of this technique with latent growth models.  相似文献   

6.
The standardized generalized dimensionality discrepancy measure and the standardized model‐based covariance are introduced as tools to critique dimensionality assumptions in multidimensional item response models. These tools are grounded in a covariance theory perspective and associated connections between dimensionality and local independence. Relative to their precursors, they allow for dimensionality assessment in a more readily interpretable metric of correlations. A simulation study demonstrates the utility of the discrepancy measures’ application at multiple levels of dimensionality analysis, and compares them to factor analytic and item response theoretic approaches. An example illustrates their use in practice.  相似文献   

7.
In practice, several measures of association are used when analyzing structural equation models with ordinal variables: ordinary Pearson correlations (PE approach), polychoric and polyserial correlations (PO approach), and conditional polychoric correlations (CPO approach). In the case of structural equation models without latent variables, the literature has shown that the PE approach is outperformed by the alternatives. In this article we report a Monte Carlo study showing the comparative performance of the aforementioned alternative approaches under deviations from their respective assumptions in the case of structural equation models with latent variables when attention is restricted to point estimates of model parameters. The CPO approach is shown to be the most robust against nonnormality. It is also robust to randomness of the exogenous variables, but not to the existence of measurement errors in them. The PO approach lacks robustness against nonnormality. The PE approach lacks robustness against transformation errors but otherwise it can perform about as well as the alternative approaches.  相似文献   

8.
When factorial invariance is violated, a possible first step in locating the source of violation(s) might be to pursue partial factorial invariance (PFI). Two commonly used methods for PFI are sequential use of the modification index (backward MI method) and the factor-ratio test. In this study, we propose a simple forward method using the confidence interval (forward CI method). We compare the performances of the aforementioned 3 methods under various simulated PFI conditions. Results indicate that the forward CI method using 99% CIs has the highest perfect recovery rates and the lowest Type I error rates. A performance that is competitive with this is that produced by the backward method with the more conservative criterion (MI = 6.635). Consistently delivering the poorest performance, regardless of the chosen confidence level, was the factor-ratio test. Also discussed are the work’s contribution, implications, and limitations.  相似文献   

9.
Classical accounts of maximum likelihood (ML) estimation of structural equation models for continuous outcomes involve normality assumptions: standard errors (SEs) are obtained using the expected information matrix and the goodness of fit of the model is tested using the likelihood ratio (LR) statistic. Satorra and Bentler (1994) introduced SEs and mean adjustments or mean and variance adjustments to the LR statistic (involving also the expected information matrix) that are robust to nonnormality. However, in recent years, SEs obtained using the observed information matrix and alternative test statistics have become available. We investigate what choice of SE and test statistic yields better results using an extensive simulation study. We found that robust SEs computed using the expected information matrix coupled with a mean- and variance-adjusted LR test statistic (i.e., MLMV) is the optimal choice, even with normally distributed data, as it yielded the best combination of accurate SEs and Type I errors.  相似文献   

10.
Latent class models of decisionmaking processes related to multiple-choice test items are extremely important and useful in mental test theory. However, building realistic models or studying the robustness of existing models is very difficult. One problem is that there are a limited number of empirical studies that address this issue. The purpose of this paper is to describe and illustrate how latent class models, in conjunction with the answer-until-correct format, can be used to examine the strategies used by examinees for a specific type of task. In particular, suppose an examinee responds to a multiple-choice test item designed to measure spatial ability, and the examinee gets the item wrong. This paper empirically investigates various latent class models of the strategies that might be used to arrive at an incorrect response. The simplest model is a random guessing model, but the results reported here strongly suggest that this model is unsatisfactory. Models for the second attempt of an item, under an answer-until-correct scoring procedure, are proposed and found to give a good fit to data in most situations. Some results on strategies used to arrive at the first choice are also discussed  相似文献   

11.
The analytically derived asymptotic standard errors (SEs) of maximum likelihood (ML) item estimates can be approximated by a mathematical function without examinees' responses to test items, and the empirically determined SEs of marginal maximum likelihood estimation (MMLE)/Bayesian item estimates can be obtained when the same set of items is repeatedly estimated from the simulation (or resampling) test data. The latter method will result in rather stable and accurate SE estimates as the number of replications increases, but requires cumbersome and time-consuming calculations. Instead of using the empirically determined method, the adequacy of using the analytical-based method in predicting the SEs for item parameter estimates was examined by comparing results produced from both approaches. The results indicated that the SEs yielded from both approaches were, in most cases, very similar, especially when they were applied to a generalized partial credit model. This finding encourages test practitioners and researchers to apply the analytically asymptotic SEs of item estimates to the context of item-linking studies, as well as to the method of quantifying the SEs of equating scores for the item response theory (IRT) true-score method. Three-dimensional graphical presentation for the analytical SEs of item estimates as the bivariate function of item difficulty together with item discrimination was also provided for a better understanding of several frequently used IRT models.  相似文献   

12.
Popular longitudinal models allow for prediction of growth trajectories in alternative ways. In latent class growth models (LCGMs), person-level covariates predict membership in discrete latent classes that each holistically define an entire trajectory of change (e.g., a high-stable class vs. late-onset class vs. moderate-desisting class). In random coefficient growth models (RCGMs, also known as latent curve models), however, person-level covariates separately predict continuously distributed latent growth factors (e.g., an intercept vs. slope factor). This article first explains how complex and nonlinear interactions between predictors and time are recovered in different ways via LCGM versus RCGM specifications. Then a simulation comparison illustrates that, aside from some modest efficiency differences, such predictor relationships can be recovered approximately equally well by either model—regardless of which model generated the data. Our results also provide an empirical rationale for integrating findings about prediction of individual change across LCGMs and RCGMs in practice.  相似文献   

13.
Structured means analysis is a very useful approach for testing hypotheses about population means on latent constructs. In such models, a z test is most commonly used for testing the statistical significance of the relevant parameter estimates or of the differences between parameter estimates, where a z value is computed based on the asymptotic standard error estimate associated with the parameter of interest. In the current article, a series of population analyses demonstrate that the z tests for latent mean structure parameters or, more directly, the standard error estimates upon which those z tests are based are, not invariant to how factors are scaled. As such, circumstances exist in which latent mean inference is compromised solely as a result of scaling decisions. This problem is illustrated in the context of between-subjects (i.e., multisample) latent means models and within-subjects latent means models. Recommendations for practice are also offered.  相似文献   

14.
When missingness is suspected to be not at random (MNAR) in longitudinal studies, researchers sometimes compare the fit of a target model that assumes missingness at random (here termed a MAR model) and a model that accommodates a hypothesized MNAR missingness mechanism (here termed a MNAR model). It is well known that such comparisons are only interpretable conditional on the validity of the chosen MNAR model’s assumptions about the missingness mechanism. For that reason, researchers often perform a sensitivity analysis comparing the MAR model to not one, but several, plausible alternative MNAR models. In the social sciences, it is not widely known that such model comparisons can be particularly sensitive to case influence, such that conclusions drawn could depend on a single case. This article describes two convenient diagnostics suited for detecting case influence on MAR–MNAR model comparisons. Both diagnostics require much less computational burden than global influence diagnostics that have been used in other disciplines for MNAR sensitivity analyses. We illustrate the interpretation and implementation of these diagnostics with simulated and empirical latent growth modeling examples. It is hoped that this article increases awareness of the potential for case influence on MAR–MNAR model comparisons and how it could be detected in longitudinal social science applications.  相似文献   

15.
The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) × 3 (exogenous latent mean difference) × 3 (endogenous latent mean difference) × 3 (correlation between factors) × 3 (mixture proportions) factorial design. In addition, the efficacy of several likelihood-based statistics (Akaike's Information Criterion [AIC], Bayesian Information Ctriterion [BIC], the sample-size adjusted BIC [ssBIC], the consistent AIC [CAIC], the Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test [aVLMR]), classification-based statistics (CLC [classification likelihood information criterion], ICL-BIC [integrated classification likelihood], normalized entropy criterion [NEC], entropy), and distributional statistics (multivariate skew and kurtosis test) were examined to determine which statistics best recover the correct number of components. Results indicate that the structural parameters were recovered, but the model fit statistics were not exceedingly accurate. The ssBIC statistic was the most accurate statistic, and the CLC, ICL-BIC, and aVLMR showed limited utility. However, none of these statistics were accurate for small samples (n = 500).  相似文献   

16.
Social scientists are frequently interested in identifying latent subgroups within the population, based on a set of observed variables. One of the more common tools for this purpose is latent class analysis (LCA), which models a scenario involving k finite and mutually exclusive classes within the population. An alternative approach to this problem is presented by the grade of membership (GoM) model, in which individuals are assumed to have partial membership in multiple population subgroups. In this respect, it differs from the hard groupings associated with LCA. The current Monte Carlo simulation study extended on prior work on the GoM by investigating its ability to recover underlying subgroups in the population for a variety of sample sizes, latent group size ratios, and differing group response profiles. In addition, this study compared the performance of GoM with that of LCA. Results demonstrated that when the underlying process conforms to the GoM model form, the GoM approach yielded more accurate classification results than did LCA. In addition, it was found that the GoM modeling paradigm yielded accurate results for samples as small as 200, even when latent subgroups were very unequal in size. Implications for practice were discussed.  相似文献   

17.
Fit indexes are an important tool in the evaluation of model fit in structural equation modeling (SEM). Currently, the newest confidence interval (CI) for fit indexes proposed by Zhang and Savalei (2016) is based on the quantiles of a bootstrap sampling distribution at a single level of misspecification. This method, despite a great improvement over naive and model-based bootstrap methods, still suffers from unsatisfactory coverage. In this work, we propose a new method of constructing bootstrap CIs for various fit indexes. This method directly inverts a bootstrap test and produces a CI that involves levels of misspecification that would not be rejected in a bootstrap test. Similar in rationale to a parametric CI of root mean square error of approximation (RMSEA) based on a noncentral χ2 distribution and a profile-likelihood CI of model parameters, this approach is shown to have better performance than the approach of Zhang and Savalei (2016), with more accurate coverage and more efficient widths.  相似文献   

18.
Structural equation models are increasingly used for clustered or multilevel data in cases where mixed regression is too inflexible. However, when there are many levels of nesting, these models can become difficult to estimate. We introduce a novel evaluation strategy, Rampart, that applies an orthogonal rotation to the parts of a model that conform to commonly met requirements. This rotation dramatically simplifies fit evaluation in a way that becomes more potent as the size of the data set increases. We validate and evaluate the implementation using a 3-level latent regression simulation study. Then we analyze data from a statewide child behavioral health measure administered by the Oklahoma Department of Human Services. We demonstrate the efficiency of Rampart compared to other similar software using a latent factor model with a 5-level decomposition of latent variance. Rampart is implemented in OpenMx, a free and open source software package.  相似文献   

19.
When the multivariate normality assumption is violated in structural equation modeling, a leading remedy involves estimation via normal theory maximum likelihood with robust corrections to standard errors. We propose that this approach might not be best for forming confidence intervals for quantities with sampling distributions that are slow to approach normality, or for functions of model parameters. We implement and study a robust analog to likelihood-based confidence intervals based on inverting the robust chi-square difference test of Satorra (2000). We compare robust standard errors and the robust likelihood-based approach versus resampling methods in confirmatory factor analysis (Studies 1 & 2) and mediation analysis models (Study 3) for both single parameters and functions of model parameters, and under a variety of nonnormal data generation conditions. The percentile bootstrap emerged as the method with the best calibrated coverage rates and should be preferred if resampling is possible, followed by the robust likelihood-based approach.  相似文献   

20.
Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form of identifying core concepts, analyzing student misconceptions, and developing CI assessment questions. Although much of the work has been focused on CS1 and a CI has been developed for digital logic, some preliminary work on CIs is underway for other courses. This literature review examines CI work in other STEM disciplines, discusses the preliminary development of CIs in computer science, and outlines related research in computer science education that contributes to CI development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号