首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concerns the stability analysis problem for stochastic delayed switched genetic regulatory networks (GRNs) with both stable and unstable subsystems. By employing the piecewise Lyapunov functional method combined with the average dwell time approach, we show that if the average dwell time is chosen sufficiently large and the derivative of the Lyapunov-like function for unstable subsystems is bounded by certain kind of continuous function, then exponential stability criteria of a desired degree are guaranteed. The derived results show that the minimal average dwell time is proportional to the time delays. Finally, an example is given to illustrate the effectiveness of the derived results.  相似文献   

2.
In this paper, an auxiliary model-based nonsingular M-matrix approach is used to establish the global exponential stability of the zero equilibrium, for a class of discrete-time high-order Cohen–Grossberg neural networks (HOCGNNs) with time-varying delays, connection weights and impulses. A new impulse-free discrete-time HOCGNN with time-varying delays and connection weights is firstly constructed, and the relationship between the solutions of original systems and new HOCGNNs is indicated by a technical lemma. From which, the global exponential stability criteria for the zero equilibrium are derived by using an inductive idea and the properties of nonsingular M-matrices. The effectiveness of the obtained stability criteria is illustrated by numerical examples. Compared with the previous results, this paper has three advantages: (i) The Lyapunov–Krasovskii functional is not required; (ii) The obtained global exponential stability criteria are applied to check whether a matrix is a nonsingular M-matrix, which can be conveniently tested; (iii) The proposed approach applies to most of discrete-time system models with impulses and delays.  相似文献   

3.
This paper deals with the problem of stabilization for a class of hybrid systems with time-varying delays. The system to be considered is with nonlinear perturbation and the delay is time varying in both the state and control. Using an improved Lyapunov–Krasovskii functional combined with Newton–Leibniz formula, a memoryless switched controller design for exponential stabilization of switched systems is proposed. The conditions for the exponential stabilization are presented in terms of the solution of matrix Riccati equations, which allow for an arbitrary prescribed stability degree.  相似文献   

4.
This paper addresses the problem of exponential synchronization of switched genetic oscillators with time-varying delays. Switching parameters and three types of nonidentical time-varying delays, that is, the self-delay, the intercellular coupling delay, and the regulatory delay are taken into consideration in genetic oscillators. By utilizing the Kronecker product techniques and ‘delay-partition’ approach, a new Lyapunov–Krasovskii functional is proposed. Then, based on the average dwell time approach, Jensen?s integral inequality, and free-weighting matrix method, delay-dependent sufficient conditions are derived in terms of linear matrix inequalities (LMIs). These conditions guarantee the exponential synchronization of switched genetic oscillators with time-varying delays whose upper bounds of derivatives are known and unknown, respectively. A numerical example is presented to demonstrate the effectiveness of our results.  相似文献   

5.
In this paper, the robust exponential stability of uncertain impulsive delay difference equations is investigated. First, some robust exponential stability criteria for uncertain impulsive delay difference equations with continuous time in which the state variables on the impulses may relate to the time-varying delays are provided. Then a robust exponential stability result for uncertain linear impulsive delay difference equations with discrete time is given. Some examples, including an example which cannot be studied by the existing results, are also presented to illustrate the effectiveness of the obtained results.  相似文献   

6.
This paper is concerned with state feedback stabilization of discrete-time switched singular systems with time-varying delays existing simultaneously in the state, the output and the switching signal of the switched controller. On the basis of equivalent dynamics decomposition and Lyapunov–Krasovskii method, exponential estimates for the response of slow states of the closed-loop subsystems running in asynchronous and synchronous periods are first given. Exponential estimates for the response of fast states are also provided by establishing an analytic equation to solve the fast states and using some algebraic techniques. Then, by employing the obtained exponential estimates and the piecewise Lyapunov function approach with average dwell time (ADT) switching, sufficient conditions for the existence of a class of stabilizing switching signals and state feedback gains are derived, which explicitly depend on upper bounds on the delays and a lower bound on the ADT. Finally, two numerical examples are provided to illustrate the effectiveness of the obtained theoretical results.  相似文献   

7.
This paper presents novel approaches for stability analysis of switched linear time-delay stochastic systems under dwell time constraint. Instead of using comparison principle, piecewise switching-time-dependent discretized Lyapunov functions/functionals are introduced to analyze the stability of switched stochastic systems with constant or time-varying delays. These Lyapunov functions/functionals are decreasing during the dwell time and non-increasing at switching instants, which lead to two mode-dependent dwell-time-based delay-independent stability criteria for the switched systems without restricting the stability of the subsystems. Comparison and numerical examples are provided to show the efficiency of the proposed results.  相似文献   

8.
This paper investigates the problem of robust H fixed-order filtering for a class of linear parameter-varying (LPV) switched delay systems under asynchronous switching that the system parameter matrices and the time delays are dependent on the real-time measured parameters. The so-called asynchronous switching means that there are time delays between the switching of filters and the switching of system modes. By constructing the parameter-dependent and mode-dependent Lyapunov-Krasovskii functional which is allowed to increase during the running time of active subsystem with the mismatched filter, and using the mode-dependent average dwell time (MDADT) switching method, the sufficient conditions for exponential stability and satisfying a novel weighted H criterion are derived. As there exist couplings between Lyapunov-Krasovskii functional matrices and system parameter matrices, we utilize slack matrices to decouple them. Based on the above results, a suitable weighted H fixed-order filter can be obtained in the form of the parameter linear matrix inequalities (PLMIs). By virtue of approximate basis function and gridding technique, the design of weighted H fixed-order filter can be transformed into the solution of the finite dimensional LMIs. Finally, a numerical example is presented to verify both the effectiveness and the low conservatism of the parameter-dependent and mode-dependent fixed-order filtering method proposed in this paper.  相似文献   

9.
This paper addresses the problem of the delay-dependent stability for neutral Markovian jump systems with partial information on transition probability. The time delays discussed in this paper are time-varying delays. Combined the new constructed Lyapunov functional with the introduced free matrices, and using the analysis technique of matrix inequalities, the delay-dependent stability conditions are obtained. The obtained results are formulated in terms of LMIs, which can be easily checked in practice by Matlab LMI control toolbox. Three numerical examples are given to show the validity and potential of the developed criteria.  相似文献   

10.
This paper is devoted to investigating the robust stochastic exponential stability for reaction-diffusion Cohen–Grossberg neural networks (RDCGNNs) with Markovian jumping parameters and mixed delays. The parameter uncertainties are assumed to be norm bounded. The delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Some criteria for delay-dependent robust exponential stability of RDCGNNs with Markovian jumping parameters are established in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing Matlab LMI toolbox. Numerical examples are provided to demonstrate the efficiency of the proposed results.  相似文献   

11.
This paper considers the stability and L2-gain for a class of switched neutral systems with time-varying discrete and neutral delays. Some new delay-dependent sufficient conditions for exponential stability and weighted L2-gain are developed for a class of switching signals with average dwell time. These conditions are formulated in terms of linear matrix inequalities (LMIs) and are derived by employing free weighting matrices method. As a special case of such switching signals, we can obtain exponential stability and normal L2-gain under arbitrary switching signals. Finally, two numerical examples are given to illustrate the effectiveness of the theoretical results.  相似文献   

12.
This paper investigates the pth moment exponential stability of impulsive stochastic functional differential equations. Some sufficient conditions are obtained to ensure the pth moment exponential stability of the equilibrium solution by the Razumikhin method and Lyapunov functions. Based on these results, we further discuss the pth moment exponential stability of generalized impulsive delay stochastic differential equations and stochastic Hopfield neural networks with multiple time-varying delays from the impulsive control point of view. The results derived in this paper improve and generalize some recent works reported in the literature. Moreover, we see that impulses do contribute to the stability of stochastic functional differential equations. Finally, two numerical examples are provided to demonstrate the efficiency of the results obtained.  相似文献   

13.
In this paper, the stability problem of discrete-time systems with time-varying delay is considered. Some new stability criteria are derived by using a switching technique. Compared with the Lyapunov–Krasovskii functional (LKF) approach, the method used in this paper has two features. First, a switched model, which is equivalent to the original system and contains more delay information, is introduced. It means that the criteria obtained by using the LKF method can be regarded as stability criteria for the switched system under arbitrary switching. Second, when the switching signal is known, the stability problem for the switched model under constrained switching is considered and piecewise LKFs are adopted to obtain stability criteria. Since constrained switching is less conservative than arbitrary switching if the switching signal is known, one can know that the obtained results in this paper are less conservative than some existing ones. Two examples are given to illustrate the effectiveness of the obtained results.  相似文献   

14.
In this paper, some sufficient conditions are obtained for existence and global exponential stability of a unique equilibrium point of competitive neural networks with different time scales and multiple delays by using nonlinear Lipschitz measure (NLM) method and constructing suitable Lyapunov functional. The results of this paper are new and they complete previously known results.  相似文献   

15.
In this paper, we will give necessary conditions for the exponential stability of linear neutral type systems with multiple time delays by employing the Lyapunov–Krasovskii functional approach. These conditions not only extend the existing results of the neutral-delay-free systems, but also provide a new tool for stability analysis of linear neutral type systems with multiple time delays by characterizing instability domains. As a medium step, we will investigate several crucial properties which are involved with both the fundamental matrix and Lyapunov matrix. Numerical examples illustrate the validity of the theoretical results.  相似文献   

16.
In this paper we study stochastic stability of delayed recurrent neural networks with both Markovian jump parameters and nonlinear disturbances. Based on the Lyapunov stability theory, the properties of a Brownian motion, the generalized Itô's formula and linear matrix inequalities technique, some new delay-dependent conditions are derived to guarantee the stochastically asymptotic stability of the trivial solution or zero solution. In particular, the activation functions in this paper depend on Markovian jump parameters and they are more general than those usual Lipschitz conditions. Also, time delays proposed in this paper comprise both constant delays and time-varying delays. Moreover, the derivative of time delays is allowed to take any value. Therefore, the results obtained in this paper are less conservatism and generalize those given in the previous literature. Finally, two numerical examples and their simulations are used to show the effectiveness of the obtained results.  相似文献   

17.
This paper investigates the problem for stability of neutral-type dynamical neural networks involving delay parameters. Different form the previously reported results, the states of the neurons involve multiple delays and time derivative of states of neurons include discrete time delays. The stability of such neural systems has not been given much attention in the past literature due to the difficulty of finding Lyapunov functionals which are suitable for stability analysis of this type of neural networks. This paper constructs a generalized Lyapunov functional by introducing new terms into the well-known Lyapunov functional that enables us to conduct a theoretical investigation into stability analysis of delayed neutral-type neural systems. Based on this modified novel Lyapunov functional, sufficient criteria are derived, which guarantee the existence, uniqueness and global asymptotic stability of the equilibrium point of the neutral-type neural networks with multiple delays in the states and discrete delays in the time derivative of the states. The applicability of the proposed stability conditions rely on testing two basic matrix properties. The constraints impose on the system matrices are determined by using nonsingular M-matrix condition, and the constraints imposed on the coefficients of the time derivative of the delayed state variables are derived by exploiting the vector-matrix norms. We also note that the obtained stability conditions have no involvement with the delay parameters and expressed in terms of nonlinear Lipschitz activation functions. We present a constructive numerical example for this class of neural networks to give a systematic procedure for determining the imposed conditions on the whole system parameters of the delayed neutral-type neural systems.  相似文献   

18.
The exponential stabilization of BAM reaction-diffusion neural networks with mixed delays is discussed in this article. At first, a general pinning impulsive controller is introduced, in which the control functions are nonlinear and the pinning neurons are determined by reordering the state error. Next, based on the designed control protocol and the Lyapunov–Krasovskii functional approach, some novel and useful criteria, which depend on the diffusion coefficients and controlling parameters, are established to guarantee the global exponential stabilization of the considered neural networks. Finally, the effectiveness of the proposed control strategy is shown by two numerical examples.  相似文献   

19.
In this paper, we investigate first the existence and uniqueness of periodic solution in a general Cohen–Grossberg BAM neural networks with delays on time scales by means of contraction mapping principle. Then by using the existence result of periodic solution and constructing a Lyapunov functional, we discuss the global exponential stability of periodic solution for above neural networks. In the last section, we also give examples to demonstrate the validity of our global exponential stability result of the periodic solution for above neural networks.  相似文献   

20.
This paper studies the problems of stability and H∞ model reference tracking performance for a class of asynchronous switched nonlinear systems with uncertain input delay. First, it is assumed switched controller and corresponding piecewise Lyapunov function are unknown but the derivative of piecewise Lyapunov function has a condition; this condition implies that the nominal system (system without input delay and disturbance) is exponentially stable by any switched controller which satisfies this condition. With this assumption, a proper Lyapunov–Krasovskii functional is constructed. By employing this new functional and average dwell time technique, the delay-dependent input-to-state stability criteria are derived under a certain delay bound; in addition, a mechanism which finds the upper bound of input delay is proposed. Finally, a kind of state feedback control law which fulfils condition of aforesaid piecewise Lyapunov function is introduced to guarantee the input-to-state stability and H∞ model reference tracking performance. Simulation examples are presented to demonstrate the efficacy of results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号