首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT

In order to create conditions for students’ meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students’ scientific literacy. Better understanding how science teachers’ instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students’ science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers’ value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers’ instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.  相似文献   

2.
Generations of students are graduating from secondary school disinterested in post-secondary study of science or pursuing careers in science-related fields beyond formal education. We propose that destabilising such disinterest among future students requires science educators to begin listening to secondary school students regarding their views of how science learning is made interesting within the science classroom. Studies on students’ interest in response to instructional strategies applied in the classroom communicate the opinions (i.e. the ‘voice’) of students about the strategies they believe make their classroom learning interesting. To this end, this scoping study (1) collects empirical studies that present from various science and non-science academic domains students’ views about how to make classroom learning interesting; (2) identifies common instructional strategies across these domains that make learning interesting; and (3) forwards an instructional framework called TEDI ([T]ransdisciplinary Connections; Mediated [E]ngagement; Meaningful [D]iscovery; and Self-determined [I]nquiry), which may provide secondary school science teachers with a practical instructional approach for making learning science genuinely interesting among their students within the secondary school science classroom context.  相似文献   

3.
Teaching is a highly personal endeavor shaped by ‘funds of knowledge’ and beliefs about teaching, learning, and students. This case study examines how one Asian immigrant teacher’s personal expectations and beliefs influenced his expectations of students and the teaching and instructional strategies he employed. His expectations of students’ behavior and their failure to conform to his expectations influenced him to utilize more traditional, didactic instructional practices and responses to classroom management dilemmas. It is generally assumed that immigrant and minority students will benefit from exposure to teachers from similar backgrounds, and that ethnically diverse teachers can better prepare minority students for the multicultural workplace and global economy. This study focuses on the role a teacher’s background and experiences play in development of their beliefs about teaching and learning, their expectations of students, and the instructional decisions they make regarding teaching and learning. This study suggests that teachers draw on their personal histories and cultural understandings to create classroom practices which are molded by microcosms of personal ‘funds of knowledge’ and beliefs about teaching and learning. In contrast to conventional wisdom and unquestioned myths, this study emphasizes the importance of knowing that teachers’ cultural backgrounds do not necessarily qualify them to provide the most appropriate instructional environment for students from similar cultural backgrounds. This study suggests that all teachers need to learn to recognize and negotiate the unique social elements culturally diverse students bring to the classroom.  相似文献   

4.
In the last years, science courses in higher education (HE) have been facing some problems, namely the lack of students’ motivation, the number of students’ failures and drop outs, particular in physics courses. The most probable reason, which has been mentioned in current science education research in HE, is that the level of interaction between teachers and learners in formal instructional settings is very low. In this paper, we describe changes that were introduced in lectures towards the promotion of active learning and analyse its effects in the classroom environment. The introduction of conceptual questions and peer instruction seems to motivate students in the class and help them engage in the learning process. These strategies have been used in the first year of an introductory physics course for engineering students in two different Portuguese HE institutions. The data were collected through questionnaires and student interviews.  相似文献   

5.
Scientific argumentation is an important learning objective in science education. It is also an effective instructional approach to constructivist science learning. The implementation of argumentation in school settings requires science teachers, who are pivotal agents of transforming classroom practices, to develop sophisticated knowledge of argumentation. However, there is a lack of understanding about science teachers’ knowledge of argumentation, especially the dialogic meaning of argumentation. In this case study, we closely examine a high school physics teacher’s argumentation-related pedagogic content knowledge (PCK) in the context of dialogic argumentation. We synthesize the teacher’s performed PCK from his argumentation practices and narrated PCK from his reflection on the argumentation practices, from which we summarize his PCK of argumentation from the perspectives of orientation, instructional strategies, students, curriculum, and assessment. Finally, we describe the teacher’s perception and adaption of argumentation in his class. We also identity the barriers to argumentation implementation in this particular case and suggest solutions to overcome these barriers.  相似文献   

6.
Elementary teachers play a crucial role in supporting and scaffolding students’ model-based reasoning about natural phenomena, particularly complex systems such as the water cycle. However, little research exists to inform efforts in supporting elementary teachers’ learning to foster model-centered, science learning environments. To address this need, we conducted an exploratory multiple-case study using qualitative research methods to investigate six 3rd-grade teachers’ pedagogical reasoning and classroom instruction around modeling practices (construct, use, evaluate, and revise) and epistemic considerations of scientific modeling (generality/abstraction, evidence, mechanism, and audience). Study findings show that all teachers emphasized a subset of modeling practices—construction and use—and the epistemic consideration of generality/abstraction. There was observable consistency between teachers’ articulated conceptions of scientific modeling and their classroom practices. Results also show a subset of the teachers more strongly emphasized additional epistemic considerations and, as a result, better supported students to use models as sense-making tools as well as representations. These findings provide important evidence for developing elementary teacher supports to scaffold students’ engagement in scientific modeling.  相似文献   

7.
The world over, secondary school science is viewed mainly as a practical subject. This may be one reason why effectiveness of teaching approaches in science education has often been judged on the kinds of practical activity with which teachers and students engage. In addition to practical work, language??often written (as in science texts) or oral (as in the form of teacher and student talk)??is unavoidable in effective teaching and learning of science. Generally however, the role of (instructional) language in quality of learning of school science has remained out of focus in science education research. This has been in spite of findings in empirical research on difficulties science students encounter with words of the instructional language used in science. The findings have suggested that use of (instructional) language in science texts and classrooms can be a major influence on the level of students?? understandings and retention of science concepts. This article reports and discusses findings in an investigation of physics teachers?? approaches to use of and their beliefs about classroom instructional language. Direct classroom observations of, interviews with, as well as content analyses of the participant teachers?? verbatim classroom talk, were used as the methods of data collection. Evidence is presented of participant physics teachers?? lack of explicit awareness of the difficulty, nature, and functional value of different categories of words in the instructional language. In conclusion, the implications of this lack of explicit awareness on the general education (initial and in-service) of school physics teachers are considered.  相似文献   

8.
We focus on assessing whether newly qualified teachers’ professional outcome expectations and their beliefs about students’ intellectual potential are associated with teachers’ self-reported classroom management and instructional practices. One hundred and eighteen novice teachers participating in the induction year programme were studied during their first years as full-time teachers. Results attest to a salient association between teachers’ more optimistic views of the malleability of students’ intellectual potential and teachers’ confidence in themselves as positive change agents in student outcomes. Also, teachers’ belief-set in the beginning of their career was shown to be associated with significant differences in the level of using instructional practices promoting mastery goal orientation in the classroom as well as offering students emotional support during the learning process. In the light of the significant belief–behaviour links demonstrated, more explicit attention to the sophistication of teachers’ ability beliefs in teacher education programmes is recommended.  相似文献   

9.
This article reports on analyses of the instructional practices of six middle- and high-school science teachers in the United States who participated in a research-practice partnership that aims to support reform science education goals at scale. All six teachers were well qualified, experienced, and locally successful—respected by students, parents, colleagues, and administrators—but they differed in their success in supporting students' three-dimensional learning. Our goal is to understand how the teachers' instructional practices contributed to their similarities in achieving local success and to differences in enabling students' learning, and to consider the implications of these findings for research-practice partnerships. Data sources included classroom videos supplemented by interviews with teachers and focus students and examples of student work. We also compared students' learning gains by teacher using pre–post assessments that elicited three-dimensional performances. Analyses of classroom videos showed how all six teachers achieved local success—they led effectively managed classrooms, covered the curriculum by teaching almost all unit activities, and assessed students' work in fair and efficient ways. There were important differences, however, in how teachers engaged students in science practices. Teachers in classrooms where students achieved lower learning gains followed a pattern of practice we describe as activity-based teaching, in which students completed investigations and hands-on activities with few opportunities for sensemaking discussions or three-dimensional science performances. Teachers whose students achieved higher learning gains combined the social stability characteristic of local classroom success with more demanding instructional practices associated with scientific sensemaking and cognitive apprenticeship. We conclude with a discussion of implications for research-practice partnerships, highlighting how partnerships need to support all teachers in achieving both local and standards-based success.  相似文献   

10.

This classroom observation study explored how science teachers (N = 22) teach for creativity in grades 5–10 in Oman. We designed an observation form with 4 main categories that targeted the instructional practices related to teaching for creativity: questioning strategy, teacher’s responses to students’ ideas, classroom activities to support creativity, and whole-lesson methods that foster creativity. An open-ended survey was also designed to explore participants’ justifications for their instructional decisions and practices. The findings indicate that the overall level of teaching for creativity was low and that participants’ performance was the highest for teacher’s responses to students’ ideas category and the lowest for classroom activities to support creativity category. We observed that a teacher-centered approach with instructional practices geared toward preparing students for examinations was dominant and that these science teachers were bound to the textbook, following cookbook-style activities. Participants believed that they did not have enough time to cover the content and teach for creativity and that they were not prepared to teach for creativity. Based on these findings, we recommend that programs be developed to prepare science teachers to teach for creativity.

  相似文献   

11.
A critical issue facing the field of education is the need to improve teachers' preparation to effectively manage student behavior in the classroom. Many pre- and in-service teachers receive exposure to evidence-based behavioral interventions, such as schoolwide positive behavioral interventions and supports, during teacher preparation programs; however, face-to-face instructional time is always at a premium given the range of learning experiences that must be acquired prior to licensure. Consequently, many educators begin their careers without strong classroom management skills, which has many unfortunate consequences, including the decision for some to leave the field within the first three to five years. In this study, we evaluated content acquisition podcasts based on validated instructional design principles. We focused on determining the extent to which preservice teachers could learn core information related to schoolwide positive behavioral interventions and supports using a short multimedia vignette compared to students who learned content using traditional methods (e.g., reading and note taking). Results show students who learned by watching content acquisition podcasts significantly outperformed students who had unlimited time to read a chapter on SW-PBIS and had access to other learning materials on a test of knowledge related to schoolwide positive behavioral interventions and supports. Implications for practice and future research are presented.  相似文献   

12.
Recently, theorists have raised concerns that pedagogical content knowledge (PCK) has become “a stale metaphor” that disregards diversity and equity, offers little to help teachers address students’ misconceptions, and portrays knowledge as “in the head” versus in practice. We refute these notions using grounded theory to specify ways one 7th-grade science teacher enacted PCK to advance student learning. With the definition of PCK as knowledge at the intersection of content and teaching, we utilised a framework for science PCK to explore instructional decision-making. Interviews conducted over three years revealed specific ways the teacher enacted PCK by designing and delivering instruction built on each of the seven conceptual science PCK components. The teacher enacted PCK to plan and deliver instruction that was responsive, adaptive, and considerate of changing needs of students and the changing classroom landscape. She infused PCK into instructional decision-making, instructional interactions, and mentoring of a student teacher, modelling the translation of educational theory into practice and habits of mind necessary for expert teaching. This enactment actively refutes Settlage’s critiques, and depicts PCK as a vibrant and effective stance for teaching that enhances learning.  相似文献   

13.
ABSTRACT

Reform initiatives around the world are reconceptualising science education by stressing student engagement in science practices. Yet, science practices are language-intensive, requiring students to have strong receptive and productive language proficiencies. It is critical to address these rigorous language demands to ensure equitable learning opportunities for all students, including English language learners (ELLs). Little research has examined how to specifically support ELL students’ engagement in science practices, such as argumentation. Using case-study methodology, we examined one middle school science teacher's instructional strategies as she taught an argumentation-focused curriculum in a self-contained ELL classroom. Findings revealed that three trends characterized the teacher’s language supports for the structural and dialogic components of argumentation: (1) more language supports focused on argument structure, (2) dialogic interactions were most often facilitated by productive language supports, and (3) some language supports offered a rationale for argumentation. Findings suggest a need to identify and develop supports for the dialogic aspects of argumentation. Furthermore, engaging students in argumentation through productive language functions could be leveraged to support dialogic interactions. Lastly, our work points to the need for language supports that make the rationale for argumentation explicit since such transparency could further increase access for all students.  相似文献   

14.
This classroom observation study explored how science teachers (N = 22) teach for creativity in grades 5–10 in Oman. We designed an observation form with 4 main categories that targeted the instructional practices related to teaching for creativity: questioning strategy, teacher’s responses to students’ ideas, classroom activities to support creativity, and whole-lesson methods that foster creativity. An open-ended survey was also designed to explore participants’ justifications for their instructional decisions and practices. The findings indicate that the overall level of teaching for creativity was low and that participants’ performance was the highest for teacher’s responses to students’ ideas category and the lowest for classroom activities to support creativity category. We observed that a teacher-centered approach with instructional practices geared toward preparing students for examinations was dominant and that these science teachers were bound to the textbook, following cookbook-style activities. Participants believed that they did not have enough time to cover the content and teach for creativity and that they were not prepared to teach for creativity. Based on these findings, we recommend that programs be developed to prepare science teachers to teach for creativity.  相似文献   

15.
Our paper builds on the construct of the zone of proximal development (ZPD) (Vygotsky in Mind in society: the development of higher psychological processes, Harvard University Press, Cambridge, 1978) to analyze the relationship between students’ answers and the help they receive as they construct them. We report on a secondary analysis of classroom and interview data that was collected with 1st and 2nd grade students completing a short scaffolded inquiry project designed to help them learn about how honeybees collect nectar. We explore how the progression of questions reveal students’ understanding of complex systems by examining how students’ progression through the questions tended to become more sophisticated as we increased support. We further compare two complex-systems perspectives, Component-Mechanism-Phenomena and agent-based approaches, to see how each would categorize students’ explanations. Findings demonstrate the value of the ZPD as an analytic framework in exploring students’ systems understanding in terms of the nature of questions (e.g., sequencing, type of question) and multiple conceptual models (e.g., component-mechanisms-phenomenon, single agent or aggregate behaviors), and how this might impact students’ groupings according to their ability and subsequent instructional support.  相似文献   

16.
The implementation of science reform must be viewed as a systems-level problem and not just focus on resources for teachers and students. High-capacity instructional leadership is essential for supporting classroom science instruction. Recent reform efforts include a shift from learning about science facts to figuring out scientific phenomena in which students use science practices as they build and apply disciplinary core ideas. We report findings from a research study on professional development (PD) to support instructional leaders' learning about the science practices. After participating in the PD, the instructional leaders' familiarity with and leadership content knowledge of the science practices significantly improved. Initially, principals used their understandings from other disciplines and content neutral visions of classrooms to make sense of science instruction. For example, they initially used their understandings of models and argument from ELA and math to make sense of science classroom instruction. Furthermore, some principals focused on content neutral strategies, like a clear objective. Over the course of the PD workshops, principals took up the language of the science practices in more nuanced and sophisticated ways. Principals' use of the language of the science practices became more frequent and shifted from identifying or defining them to considering quality and implementation in science classrooms. As we design tools to support science, we need to consider instructional leaders as important stakeholders and develop resources to specifically meet their needs. If the science feels too unfamiliar or intimidating, principals may avoid or reframe science reform efforts. Consequently, it is important to leverage instructional leaders' resources from other disciplines and content neutral strategies as bridges for building understanding in science. We argue that the science practices are one potential lever to engage in this work and shift instructional leaders' understandings of science instruction.  相似文献   

17.
18.
Educational stakeholders across the globe are demanding science education reform that attends simultaneously to culturally diverse students’ needs and promotes academic excellence. Although professional development programs can foster science teachers’ growth as culturally responsive educators, effective supports to this end are not well identified. This study examined associations between specific Science Teachers are Responsive to Students (STARTS) program activities and United States high school life science teachers’ understanding and enactment of culturally responsive science teaching. Findings suggest: (a) critically examining their practices while learning of students’ needs and experiences enabled teachers to identify responsive instructional strategies and relevant science topics for culturally responsive teaching; (b) evaluating culturally responsive exemplars while identifying classroom-based needs allowed teachers to identify contextually appropriate instruction, thereby yielding a robust understanding of the purpose and feasibility of culturally responsive science teaching; and (c) by justifying the use of responsive and reform-based instructional strategies for their classrooms, teachers made purposeful connections between students’ experiences and science instruction. We propose a set of empirically based design conjectures and theoretical conjectures to generate adaptable knowledge about preparing culturally responsive science teachers through professional development.  相似文献   

19.
We investigated secondary science and mathematics teachers engaged in a two-and-a-half-year professional development effort focused on equity. We examined how teachers conducting research on their own instructional practices—a central learning strategy of the professional development project—informed and/or constrained their views related to three strands of equity: teachers and teaching, students and learning, and students’ families and communities. Data collected included recordings of professional development seminars and school-site meetings, three sets of individual interviews with teacher researchers, and drafts and final products of the classroom research teachers conducted. From our qualitative analyses of data, we found that most teachers addressed at least two of the three equity strands in researching their own practice. We also found that most transformed their understandings of teachers and students as a result of their teacher research process. However, teachers’ views of families and communities changed in less substantive ways. We close with recommendations for other researchers and professional developers intent on supporting science and mathematics teachers in using teacher research to work toward equity.  相似文献   

20.
Typical assessment systems often measure isolated ideas rather than the coherent understanding valued in current science classrooms. Such assessments may motivate students to memorize, rather than to use new ideas to solve complex problems. To meet the requirements of the Next Generation Science Standards, instruction needs to emphasize sustained investigations, and assessments need to create a detailed picture of students’ conceptual understanding and reasoning processes.

This article describes the design process and potential for automated scoring of 2 forms of inquiry assessment: Energy Stories and MySystem. To design these assessments, we formed a partnership of teachers, discipline experts, researchers, technologists, and psychometricians to align curriculum, assessments, and rubrics. We illustrate how these items document middle school students’ reasoning about energy flow in life science. We used evidence from review by science teachers and experts in the discipline; classroom experiments; and psychometric analysis to validate the assessments, rubrics, and automated scoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号