首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.  相似文献   

2.
Control design is important for proton exchange membrane fuel cell (PEMFC) generator. This work researched the anode system ofa 60-kW PEMFC generator. Both anode pressure and humidity must be maintained at ideal levels during steady operation. In view of characteristics and requirements of the system, a hybrid intelligent PID controller is designed specifically based on dynamic simulation. A single neuron PI controller is used for anode humidity by adjusting the water injection to the hydrogen cell. Another incremental PID controller, based on the diagonal recurrent neural network (DRNN) dynamic identification, is used to control anode pressure to be more stable and exact by adjusting the hydrogen flow rate. This control strategy can avoid the coupling problem of the PEMFC and achieve a more adaptive ability. Simulation results showed that the control strategy can maintain both anode humidity and pressure at ideal levels regardless of variable load, nonlinear dynamic and coupling characteristics of the system. This work will give some guides for further control design and applications of the total PEMFC generator.  相似文献   

3.
To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper.The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances. Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.  相似文献   

4.
In this paper, a 60 kW proton exchange membrane fuel cell (PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes. To achieve an overall system model, the system is divided into five modules: the PEMFC stack (anode and cathode flows, membrane hydration, and stack voltage and power), cathode air supply (air compressor, supply manifold, cooler, and humidifier), anode fuel supply (hydrogen valve and humidifier), cathode exhaust exit (exit manifold and water return), and power conditioning (DC/DC and DC/AC) modules. Using a combination of empirical and physical modeling techniques, the model is developed to set the operation conditions of current, temperature, and cathode and anode gas flows and pressures, which have major impacts on system performance. The current model is based on a 60 kW PEMFC power plant designed for residential applications and takes account of the electrochemical and thermal aspects of chemical reactions within the stack as well as flows of reactants across the system. The simulation tests show that the system model can represent the static and dynamic characteristics of a 60 kW PEMFC generation system, which is mathematically simple for system parameters and control designs.  相似文献   

5.
A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations.The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particularchar acteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.  相似文献   

6.
Visible and near infrared spectroscopy is a non-destructive, green, and rapid technology that can be utilized to estimate the components of interest without conditioning it, as compared with classical analytical methods. The objective of this paper is to compare the performance of artificial neural network (ANN) (a nonlinear model) and principal component regression (PCR) (a linear model) based on visible and shortwave near infrared (VIS-SWNIR) (400–1000 nm) spectra in the non-destructive soluble solids content measurement of an apple. First, we used multiplicative scattering correction to pre-process the spectral data. Second, PCR was applied to estimate the optimal number of input variables. Third, the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models. The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN. Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR.  相似文献   

7.
Nonlinear modeling of PEMFC based on neural networks identification   总被引:2,自引:0,他引:2  
INTRODUCTION With worldwide increase of air pollution and the environmental consciousness of governments, people have to look for new resources to mitigate the energy crisis and improve the present environmental status (Ferng et al., 2004; Rowe and Li, 2001). Fuel cells are highly efficient and environmentally clean electrical generators (Mann et al., 2000) that convert the chemical energy of a gaseous fuel directly into elec-tricity energy and play an important role in solving the prob…  相似文献   

8.
质子交换膜燃料电池(PEMFC)电堆的温度是影响燃料电池性能的关键因素之一,建立电堆的热系统模型是准确控制电堆温度的基础。文章中利用反向传播(BP)神经网络对质子交换膜燃料电池的静态热系统进行建模。仿真结果表明,神经网络建模方法能够较好地拟合数据。  相似文献   

9.
INTRODUCTION Fuel cells have attracted more attention in the last few years due to scarcity of the world energy source. The Proton Exchange Membrane Fuel Cell (PEMFC) is the focus of current development efforts because it is capable of higher power density and faster start-up than other fuel cells (Zhang et al., 2004). Research emphasis is on high power density with adequate energy conversion efficiency. PEMFC performance is related to many factors, among which electrolyte membrane …  相似文献   

10.
A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.  相似文献   

11.
Modelling and control PEMFC using fuzzy neural networks   总被引:1,自引:0,他引:1  
INTRODUCTION With worldwide increase of air pollution and the environmental consciousness of governments,people have to look for new resources to mitigate the energy crisis and improve the present environmental status(Baschuk and Li,2000;Rowe and Li,2001).Fuel cells are highly efficient and environmentally clean electricity generators(Berning et al.,2002)that convert the chemical energy of a gaseous fuel directly into electrical energy and play an important role in solving the energy pro…  相似文献   

12.
INTRODUCTION Proton Exchange Membrane Fuel Cell (PEMFC) is being rapidly developed in recent years because of its compact structure, light weight, low working temperature and rapid startup characteristics. But its E-I characteristic curve reveals its decreasing per- formance when confronted with suddenly increasing power demand, and high cost also restrains the ap- plication of the fuel cell. So the hybrid power scheme is the most suitable selection presently. Most of researches on fu…  相似文献   

13.
NomenclatureA-area ( m2)Dw-membrane water diffusivity ( m2/s)F-=96 487I-current (A)M-molecule mass (kg/mol)T-temperature (K)W-mass flowrate (kg/s)cw-water concentration in membrane ( mol/m3)m-mass (kg)n-cell numbernd-electro-osmotic drag coefficientp-pres…  相似文献   

14.
This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.  相似文献   

15.
This paper presents an application of iterative learning control (ILC) technique to the voltage control of solid oxide fuel cell (SOFC) stack. To meet the demands of the control system design, an autoregressive model with exogenous input (ARX) is established. Firstly, by regulating the variation of the hydrogen flow rate proportional to that of the current, the fuel utilization of the SOFC is kept within its admissible range. Then, based on the ARX model, three kinds of ILC controllers, i.e. P-, PI- and PD-type are designed to keep the voltage at a desired level. Simulation results demonstrate the potential of the ARX model applied to the control of the SOFC, and prove the excellence of the ILC controllers for the voltage control of the SOFC.  相似文献   

16.
INTRODUCTION Water management is one of the critical opera-tion issues in proton exchange membrane (PEM) fuelcells. Spatially varying concentrations of water inboth vapour and liquid form are expected throughoutthe cell because of varying rates of production andtransport (Sui and Djilali, 2005). Devising betterwater management is therefore a key issue in PEMFCdesign, and this requires improved understanding ofthe parameters affecting water transport in the mem-brane. Proper thermal m…  相似文献   

17.
This paper discusses dynamic characteristics of proton exchange membrane fuel cell (PEMFC) under rapid fluctuation of power demand. Wavelet neural network is adopted in the identification of the characteristic curve to predict the voltage. The system control scheme of the voltage and power is introduced. The corresponding schemes for voltage and power control are studied. MATLAB is used to simulate the control system. The results reveal that the adopted control schemes can produce expected effects. Corresponding anti-disturbance and robustness simulation are also carried out. The simulation results show that the implemented control schemes have better robustness and adaptability.  相似文献   

18.
发展了一种基于MATLAB和VB软件包的质子交换膜燃料电池(PEMFC)特性参数仿真实验软件。主要介绍了仿真软件的建模、设计方法和用户界面构成。仿真实验结果表明,该仿真软件可以满足PEMFC特性参数仿真实验教学的要求,为PEMFC特性参数的实验研究和实验教学与演示提供了一个有效工具。  相似文献   

19.
This paper presented a control design methodology for a proton exchange membrane fuel cell (PEMFC) generation system for residential applications. The dynamic behavior of the generation system is complex in such applications. A compre- hensive control design is very important for achieving a steady system operation and efficiency. The control strategy for a 60 kW generation system was proposed and tested based on the system dynamic model. A two-variable single neuron proportional-integral (PI) decoupling controller was developed for anode pressure and humidity by adjusting the hydrogen flow and water injection. A similar controller was developed for cathode pressure and humidity by adjusting the exhaust flow and water injection. The desired oxygen excess ratio was kept by a feedback controller based on the load current. An optimal seeking con- troller was used to trace the unique optimal power point. Two negative feedback controllers were used to provide AC power and a suitable voltage for residential loads by a power conditioning unit. Control simulation tests showed that 60 kW PEMFC generation system responded well for computer-simulated step changes in the load power demand. This control methodology for a 60 kW PEMFC generation system would be a competitive solution for system level designs such as parameter design, performance analysis, and online optimization.  相似文献   

20.
提出了基于人工神经网络(ArtificialNeuralNetworks)对动力结构进行系统辨识的方法,即应用人工神经网络预测结构地震响应.采用BP算法的前馈网络(简称BP网络)对剪切模型结构进行系统辨识.首先用实际地震波及相应的模拟地震响应训练本文提出的BP网络,然后用“已学会”的BP网络预测其它地震波激励下的结构地震响应.还讨论了网络拓扑结构、输入单元数等对网络学习和预测的影响.通过本文可以发现,合适的人工神经网络结构能准确地辨识结构动力特性和预测结构动力响应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号