首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1直设线直方线程l的经各过种点形P式都可以统一为点向式0(x0,y0),v=(a,b)为其一个方向向量(ab≠0),P(x,y)是直线上的任意一点,则向量P0P与v共线,根据向量共线的充要条件,存在唯一实数t,使P0P=tv,即x=x0+at,y=y0+bt.消去参数t得直线方程为x-x0a=y-y0b将其变形为b(x-x0)=a(y-y0).易证当ab=0时直线方程也是b(x-x0)=a(y-y0),我们称方程b(x-x0)=a(y-y0)为直线的点向式方程.1)经过点P0(x0,y0)且斜率为k的直线方程:斜率为k的直线方向向量为(1,k),代入点向式得直线方程为k(x-x0)=(y-y0).即为直线方程的点斜式.2)直线斜率为k,在y轴的截距为b,代入点向式得直线方程为k(x-0)=(y-b),也就是直线方程的斜截式.3)经过两点P1(x1,y1),P2(x2,y2)的直线方程:直线方向向量为(x2-x1,y2-y1),代入点向式得直线方程为(y2-y1)(x-x1)=(x2-x1)(y-y1),即为两点式.4)在x轴的截距为a,在y轴的截距为b的直线方程:直线方向向量为(0,b)-(a,0)=(-a,...  相似文献   

2.
错在哪里     
问题1如图,已知两定点A(-1,0),B(2,0),求使得∠PBA=2∠PAB的点P的轨迹方程.解设直线AP,BP的斜率分别是kAP,kBP,点P的坐标为(x,y),设∠PBA=β,∠PAB=α,因β=2α,则tanβ=tan2α,tanβ=12-tatannα2α.①∵kAP=x y1=tanα,kBP=x-y2=tan(π-β)=-tanβ,∴代入①有-x-y2=2yx 11-x y12②整理得3x2-y2=3,即为点P的轨迹方程.解答错了!错在哪里?评析上述解法有以下几处错误:(1)推导点P的轨迹方程时,只考虑了点P的x轴上方的情况,未对点P在x轴下方的情况进行分析.(2)由题设∠PBA=2∠PAB,从而有|PA|>|PB|,故轨迹在线段AB的垂直平分…  相似文献   

3.
已知 (cos~4α)/(cos~2β) (sin~4α)/(sin~2β)=1,求证 (cos~4β)/(cos~2α) (sin~4β)/(sin~2α)=1。 这是一道数学竞赛题,公布的标准答案均较繁琐。本文将给出两种简洁的解法。 证法一: 设sin~2α=x,sin~2β=y,x、y∈(0,1),则由已知有:x~2/y (1-x)~2/(1-y)=1 ①变形为 x~2(1-y) y(1-x)~2=y(1-y),即 (x-y)~2=0,∴ x=y,由此,①可写为:y~2/x (1-y)~2/(1-x)=1,  相似文献   

4.
人教社出版的《全日制普通高中教科书试验修订本必修·第二册·上》第133页第5题如下:两定点的坐标分别为A(-1,0)、B(2,0),动点M满足条件∠MBA=2∠MAB,求动点M的轨迹方程.配套的教参给出了如下的解答:如图1,设∠MBA=α,∠MAB=β,(α>0,β>0),点M的坐标为(x,y),∵α=2β,∴tanα=tan2β=2tanβ1-tan2β,当点M在x轴上方时,tanβ=yx+1,tanα=-yx-2,所以-yx-2=2y1+x1-y2(x+1)2,也就是,3x2-y2=3,当点M在x轴的下方时,tanα=yx-2,tanβ=-yx+1,仍可得上面的方程.又α=2β,∴|AM|>|BM|,因此点M一定在线段AB垂直平分线的右侧,所以所求的轨…  相似文献   

5.
本刊1985年第1期《论函数y=(ax~2 bx c)/(mx~2 nx l)(m≠0)值域的求法》中的方法可以推广,今用该法求函数y=(a_1f~2(x) b_1f(x) c_1)/(f_2f~2(x) b_2f(x)) c_2)的值域。一、如果f(x)的函数值可取一切实数。令u=f(x),转化为该文讨论的函数。 [例1] 求函数y=(sin~2x-2sinxcosx 3cos~2x)/(sin~2x 2sinxcosx-3cos~2x)的值域解:1°当cosx=0时,y=1。 2°当cosx≠0时,该函数可化为 y=(tg~2x-2tgx 3)/(tg~2x 2tgx-3) 因为tgx可取一切实数值,且该函数的分子分母无公因式,于是 (1-y)tg~2x-2(1 y)tgx 3(1 y)=0 则Δ=[-2(1 y)]~2-4×3(1 y)(1-y)≥0 2y~2 y-1≥0  相似文献   

6.
本文探讨抛物线对顶点张直角的弦的几个性质及应用.设点A,B在抛物线y2=2px或x2=2py(p>0)上,且OA⊥OB(O为坐标原点).1、对抛物线y2=2px,弦AB过定点(2p,0),反之也成立;对抛物线y2=2px弦AB过定点(0,2p),反之也成立.2、若直线OA的斜率为k(k≠0),则:(1)对抛物线y2=2px,弦AB的中点为(p(k2 1/k2),p(?k 1/k));对抛物线x2=2py,弦AB的中点为(p(k?1/k),p(k2 1/k2)).(2)弦AB的长l=2p(k2 k12 12)2?94;(3)△AOB面积2S2p2k1k= .下面只对y2=2px的情形加以证明,对x2=2py的情形类似可证.证明由???yy2==k2x,px,得A(2k p2,2kp).由OA⊥OB可得B(2pk2,?…  相似文献   

7.
在确定直线诸因素中,斜率的地位具有举足轻重. 1.斜率的三种表示法(1)若直线l的倾斜角为α∈(0°,180°),则当a≠90°时,斜率kl=tana;当a=90°时,即l⊥x轴,斜率不存在. (2)若直线l过(x1,y1),(x1,y2)两点.当X1≠X2时,kl-y2-y1/x2-x1;当X1=x2时,l⊥x  相似文献   

8.
1 函数y=x p/x(p≠0)的图象 为了看清函数y=x p/x(p≠0)即xy-x~2=p(p≠0)的图象是什么,可借助坐标轴的旋转变换化简此方程。将x、y轴按逆时针方向绕原点旋转θ角(θ∈(0,π/2)),而变  相似文献   

9.
题目 设 0≤θ≤π ,直线l:xcosθ +ysinθ=2和椭圆x26+y22 =1有公共点 .求 :θ的取值范围 .解法一 :(判别式法 )①cosθ=0时 ,直线l的方程为 :y =2 ,此时直线和椭圆相离 .②cosθ≠ 0时 ,直线l的方程为 :x=-ytanθ+2secθ 代入椭圆方程 :x2 +3y2 -6=0 可得 :( 3 +tan2 θ)y2 -4secθtanθ·y+4tan2 θ-2 =0由Δ =16sec2 θ·tan2 θ -4 ( 3 +tan2 θ) ( 4tan2 θ -2 ) ≥ 0 ,解得tan2 θ≤ 1,又∵ 0 ≤θ≤π ,∴θ∈ 0 ,π4∪ 3π4,π .评注 :判别式法是处理直线和圆锥曲线位置关系最常规的方法 ,思想方法较简单 ,但有时运算较复杂 .解…  相似文献   

10.
命题 若一直线与抛物线 C:y2 =2 px(p>0 )相交于 A(x1 ,y1 ) ,B(x2 ,y2 )两点 ,则直线 AB的方程为 :2 px- (y1 y2 ) y y1 y2 =0 .证明 ∵点 A(x1 ,y1 ) ,B(x2 ,y2 )在抛物线 C:y2 =2 px上 ,∴ y21 =2 px1 ,y22 =2 px2 .作差得 :y21 - y22 =2 p(x1 - x2 ) ,当 x1 ≠ x2 时 ,k A B=y1 - y2x1 - x2 =2 py1 y2 ,∴直线 AB的方程为 :y- y1 =2 py1 y2(x- x1 ) ,即 2 px- (y1 y2 ) y y1 y2 =0 . 1当 x1 =x2 时 ,直线 AB为 :x=x1 ,此时y2 =- y1 ,故 1仍成立 .综上 ,命题成立 .特别地 :若 A(x1 ,y1 )与 B(x2 ,y2 )重合 ,即可得到过点 A…  相似文献   

11.
性质椭圆x2a2+y2b2=1(a>b>0)上任意一点P与过中心的弦AB的两端点A、B的连线PA、PB与对称轴不平行,则直线PA、PB的斜率之积为定值.证明如图1所示,设P(x,y),A(x1,y1),则B(-x1,-y1).∴x2a2+y2b2=1,①∴x21a2+y21b2=1,②由①-②得x2-x21a2=-y2-y21b2,∴y2-y21x2-x21=-b2a2,∴KPA·KPB=y-y1x-x1·y+y1x+x1=y2-y21x2-x21=-b2a2为定值.这条性质是圆的性质“圆上一点对直径所张成的角为直角”在椭圆中的推广,它充分揭示了椭圆的本质属性,因而能简洁地解决问题.推论若M是椭圆的弦AB之中点,则直线OM与直线AB的斜率之积为定值.证明如图2所…  相似文献   

12.
文 [1 ]、[2 ]分别探讨了直线方程 x0 xa2 +y0 yb2 =1和直线方程 x0 xa2 -y0 yb2 =1的几何意义。两篇论文给出的结论对于研究椭圆和双曲线具有非常重要的意义。其实对于抛物线、圆也有类似的结论 ,作为对两篇论文的补充现给出抛物线与之相关的定理。定理 1 已知P0 (x0 ,y0 )是抛物线 y2 =2 px上的任意一点 ,则直线 y0 y =p(x0 +x)表示此抛物线上以P0 (x0 ,y0 )为切点的切线。证明 当 y0 >0时 ,抛物线的方程可以写成 y =± 2 px,则 y′=± p2 px,所以P0 (x0 ,y0 )为切点的切线的斜率为± p2px0,切线的方程为 y-y0 =± p2 px0(x -x0 ) ,即…  相似文献   

13.
为探索二元甬数z=f(x,y)方向导数的几何特征,使用代数分析和矢量分析的方法研究函数z=f(x,y)的方向导数.对于由方程z=f(x,y)给出的曲面S上的曲线C:z=f(x,y)且y=y0+tanα·(x-x0),设L是过曲面S上(x0,y0,f(x0,y0))点曲线C的切线,θ是有向直线L与矢量→/AB的夹角.那么二元函数z=f(x,y)在(x0,Y0,f(x0,y0))点沿方向AB的方向导数就是tanθ.  相似文献   

14.
<正>一、直线方程x=my+n的特征(1)过x轴上一点(n,0);(2)若直线的斜率为k(k≠0),则k=1/m(m≠0);若直线的倾斜角为α(α≠0),则m=1/tanα;若m=0,直线方程为x=n,此时直线的斜率不存在;(3)应用范围:能表示与x轴垂直的直线(即斜率不存在),不能表示与x轴平行的直线(即斜率为0).二、直线方程y=k(x-x_0)+y_0的特征  相似文献   

15.
一、结论及证明1·如图1所示,轨迹上任意一点P(x,y),P点速度方向的反向延长线交x轴于A点,A点的横坐标等于P点横坐标的一半,即XA=12XP·证明:P点坐标(x,y),则x=v0t,y=21gt2·因为cotβ=vv0Y=gv0t,AB=ycotβ=12v0t=21x,OA=OB-AB=12x·所以XA=21XP·2·如图2所示,平抛运动的物体,轨迹上任意一点的坐标P(x,y),P点速度的偏向角为β,其正切值等于位移方向与X轴夹角正切值的两倍,即tanβ=2tanα·证明:P点坐标为(x,y),则x=v0t,y=21gt2,tanα=xy=2gvt0·vx=v0,vy=gt,tanβ=vvyx=vg0t·比较得tanβ=2tanα·二、结论妙用带电粒子垂直进入…  相似文献   

16.
椭圆、双曲线方程的三种形式   总被引:1,自引:0,他引:1  
我们知道,直线方程除了一般式、截距式外还有以下三种形式:(1)点斜式y-y0 k(x~x0);(2)斜截式 y=kx b;(3)两点式y-y1/y2-y1=x-x1/x2-x1.  相似文献   

17.
代数、几何,三角中有一类题目,若利用等比定理来解,则可以使解题过程大大简化,请看下面数例: 例1 若(x(y+z-x))/(log_αx)=(y(z+x-y))/log_αy=(z(x+y-z))/(log_αz)。求证:y~zz~y=z~xx~z=x~yy~x。证明:∵(y+z-x)/((1/x)log_αx)=(z+x-y)/((1/y)log_αy)=(x+y-z)/((1/z)log_αz)。两次运用等比定理得  相似文献   

18.
本文介绍曲线Ax2+By2=C(AB≠0)的一条有趣性质,并以高考题为例说明其应用.1曲线的性质定理设曲线Ax2+By2=C(AB≠0)与直线P1P2相交于P1(x1,y1)、P2(x2,y2)两点,P为线段P1P2的中点,若直线P1P2、OP的斜率分别为k、m,则A+kmB=0.证明设P(x0,y0),则x1+x2=2x0,y1+y2=2y0,且xy00=1m.因为P1(x1,y1)、P2(x2,y2)两点在曲线上,所以Ax21+By12=C,Ax22+By22=C.两式相减并整理,得A(x1-x2)x0+B(y1-y2)y0=0,由题意知x1≠x2,则有y1-y2x1-x2=-AByx00,即k=-mAB,所以A+kmB=0.2性质的应用2·1求圆锥曲线的离心率例1(2005年全国高考题)已知椭圆的中…  相似文献   

19.
在对圆锥曲线的研究中 ,笔者发现了它的一个有趣性质 ,介绍如下 .定理 1 给定抛物线C :y2 =2px(p>0 ) ,O是顶点 ,过y轴上一定点M(0 ,m) (m ≠ 0 )引直线交C于P、Q两点 ,记KOP、KOQ 分别为直线OP、OQ的斜率 ,则KOP+KOQ 为定值2pm .证明 如图 1 ,设P(x1 ,y1 ) ,Q(x2 ,y2 ) ,则yi2 =2pxi(i =1 ,2 ) .又设直线MP的斜率为k(k≠ 0 ) ,则直线MP的方程为x=y-mk ,代入C的方程并整理得ky2 - 2py+2pm =0 .由y1 ,y2 为以上关于y的二次方程的两根知y1 +y2 =2pk ,y1 y2 =2pmk .于是 ,KOP +KOQ =y1 x1 +y2x2 =2py1 +2py2 =2p(y1 +y2 )y1 y2…  相似文献   

20.
策划S高二数学爱好者2006·12一、通法指津1.点p(x,y)关于点M(a,b)成中心对称的点是Q(2a-x,2b-y).2.两点P(x1,y1)、Q(x2,y2)关于直线Ax By C=0(AB≠0)成轴对称的充要条件是Ax1 2x2 By1 2y2 C=0,且-AB·yx22--yx11=-1.特例:点P(x,y)顺次关于直线y=0,x=0,y=x,y=-x,x=m(m≠0),y=n(  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号