首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>在平面向量中,我们把式子a·b=(a+b)2-(a-b)2-(a-b)2/4称为极化恒等式,其中a+b与a-b的几何意义是以向量a、b为邻边的平行四边形的两条对角线。可以使用极化恒等式的条件是a-b和a+b其中之一是可知的。在每年考查平面向量的高考题  相似文献   

2.
<正>学习了整式的乘法后,我们知道,关于整式的乘法公式有平方差公式(a+b)(a-b)=a2-b2和完全平方公式(a+b)2=a2+2ab+b2、(a-b)2=a2-2ab+b2.另外,(x+p)(x-q)=x2-(p+q)x+pq也可作为两个含有相同字母的一次二项式相乘的公式.  相似文献   

3.
<正> 在初一数学中,大家学习了下面的两个完全平方公式:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.两式相减得如下的“积化和差”平方差公式: 定理1 4ab=(a+b)2-(a-b)2. (1) 由于(a-b)2≥0,故由(1)式又得下面的积化和的完全平方不  相似文献   

4.
将完全平方公式(a+b)~2=a~2+2ab+b~2,(a-b)~2-2ab+b~2进行变形后易得以下几个公式:a~2+b~2=(a+b)~2-2ab=(a-b)~2+2ab,(a+b)~2=(a-b)~2+4ab(a-b)~2=(a+b)~2-4ab,(a+b)~2-(a-b)~2=2(a~2+b~2),(a+b)~2-(a-b)~2=4ab,(和差化积公式)ab=(a+b/2)~2-(a-b/2)~2.(积化和差公式)  相似文献   

5.
学了乘法公式后,大家不难得到下面一个"积化和差"公式:ab=((a+b)/2)~2-((a-b)/2)~2.下面说明上述公式的应用.1.用于因式分解  相似文献   

6.
公式ab=((a+b)/2)2-((a-b)/2)2的正确性是显然的,用此公式,可巧解国内外一些竞赛题. 例1 正数a,b,c,x,y,z满足a+x=b+y=c+z=k,求证:ax+by+cz相似文献   

7.
<正>极化恒等式设a、b是平面内的两个向量,则有a·b=1/4[(a+b)2-(a-b)2-(a-b)2].其几何意义是:在ABC中,若AD是BC边上的中线,则AB(向量)·AC(向量)=AD2].其几何意义是:在ABC中,若AD是BC边上的中线,则AB(向量)·AC(向量)=AD2-BD2-BD2.换句话说,极化恒等式能够将共起点(终点)的向量之数量积转化为中线长与半底边长的平方差.此恒等式的精妙之处在于建立了向量数量积与几何长度之间联系的桥梁,将代数与几何  相似文献   

8.
2.2 由教材编拟解答题的示例示例11 由乘法公式,有(a+b)~2=a~2+2ab+b~2,(a-b)~2=a~2-2ab+b~2.相减,可得一个恒等式(a+b)~2-4ab=(a-b)~2.①然后,把左右两边拆开,令①式左边为0,则右边  相似文献   

9.
<正>在求形如(A+B(1/2))(1/2))(1/3)+(A-B(1/3)+(A-B(1/2))(1/2))(1/3)(B≥0)的两个三次根式的代数和时,我们可把整个三次根式设为一个新变元,令x=(A+B(1/3)(B≥0)的两个三次根式的代数和时,我们可把整个三次根式设为一个新变元,令x=(A+B(1/2))(1/2))(1/3)+(A-B(1/3)+(A-B(1/2))(1/2))(1/3),然后利用两数和的立方公式:(a+b)(1/3),然后利用两数和的立方公式:(a+b)3=a3=a3+b3+b3+3ab(a+b)【此公式可通过(a+b)3+3ab(a+b)【此公式可通过(a+b)3=(a+b)3=(a+b)2(a+b)=(a2(a+b)=(a2+2ab+b2+2ab+b2)(a+b)求得.】将变换后的式子两边三次方,得到关于x的  相似文献   

10.
由完全平方公式a2±2ab+b2=(a±b)2经变形易得恒等式: ab=(a+b/2)2-(a-b/2)2. 这个恒等式表明了两个代数式的积、和、差的一个相等关系,它有广泛的应用,下面举例说明. 例1 分解因式(x+y-2)(z+y-2xy)+(xy-1)2. (96年天津数竞)解原式=(2x+2y-2-2xy/2)3- (2xy-2/2)2+(xy-1)2  相似文献   

11.
完全平方公式的变形运用广泛,灵活多变,对学生解题能力的训练有很大的功效.现举几例说明它的应用. 完全平方公式的变形有如下几种形式: 1.(a+b)~2=(a~2+b~2)~2+2ab; 2.(a-b)~2=(a~2+b~2)~2-2ab; 3.(a+b)~2+(a-b)~2=2(a~2+b~2); 4.(a+b)~2-(a-b)~2=4ab.  相似文献   

12.
一、完全平方公式的变形变形一:a2+b2=(a+b)2-2ab.变形二:(a+b)2-(a-b)2=4ab.变形三:|a-b|=√(a+b)2-4ab.例1在实数范围内因式分解a4+1.解:由变形一,得a4+1=(a2)2+1=(a2+1)2-2·a2·1=(a2+2~(1/2)a+1)(a2-2~(1/2)a+1)例2 已知x2-5x+1=0,求x2+1/x2的值.  相似文献   

13.
已知x2-2kx+1是完全平方式,求K2003=____.解析:题设式第一项、第三项相当于完全平方公式中的a与b,而-2kx相当于完全平方公式中的±2ab,又因为完全平方公式有两个:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2,因此k的值就有可能有两个,由于x2-2kx+1=(x±1)2=x2±2x+1,故-2kx=±2x,因此k=±1,所以k2003=(±1)2003=±1.  相似文献   

14.
完全平方公式(a+b)^2=a^2+2ab+b^2、(a-b)^2=a^2-2ab+b^2的两边相减得 ab=1/4[(a+b)^2-(a-b)^2]…… 这是一个极其重要的恒等式,它能使我们更便捷地解答一些题目,请看下面的例子.[第一段]  相似文献   

15.
正公式(a+b)~2=a~2+2ab+b~2和(a-b)~2=a~2-2ab+b~2统称为完全平方公式.熟练地掌握了这两个公式的应用后,在学习中,还应注意它们的三种变形及其应用.一、逆向变形a~2+2ab+b~2=(a+b)~2,a~2-2ab+b~2=(a-b)~2.例1计算999×999+1999.  相似文献   

16.
进行式的恒等变形时,常用到下面的技巧。一、同加、同减例(1) 已知(a+b)~2=7,(a-b)~2=3,求a~4+b~4的值。解:将(a+b)~2=7,(a-b)~2=3两式分别相加、相减得: 2(a~2+b~2)=10,4ab=4。即 a~2+b~2=5,ab=1 ∴ a~4+b~4=(a~2+b~2)~2-2a~2b~2=5~2-2×1~2=23。例(2) 设a>0,b>0,a~2+b~2=7ab,求证: lg[1/3(a+b)]=1/2(lga+lgb)。解:a~2+b~2=7ab等式两边同加上2ab得: (a+b)~2=9ab。即((a+b)/3)~2=ab,  相似文献   

17.
<正>高考题1(2010年高考辽宁卷理科第8题)平面上O,A,B三点不共线,设OA→=a,OB→=b,则△OAB的面积等于()A.(a2*b2*b2-(a·b)2-(a·b)2)2)(1/2)B.(a(1/2)B.(a2b2b2+(a·b)2+(a·b)2)2)(1/2)C.1/2(a(1/2)C.1/2(a2b2b2-(a·b)2-(a·b)2)1/2D.1/2((a2)1/2D.1/2((a2*b2*b2+(a·b)2+(a·b)2)1/2答案:C.这道高考题的结论就是向量形式的三角形面积公式:定理1若三点O,A,B不共线,则S_(△OAB)=1/2  相似文献   

18.
学过因式分解的人爱说:“一提、二代、三分组”.“提”是指“提取公因式”,在因式分解时,首先应当想到的是有没有公因式可提.“代”就是指“应用公式”(代公式).将乘法公式反过来写就得到因式分解中所用的公式,常见的有七个公式:(1)a2-b2=(a+b)(a-b);(2)a3+b3=(a+b)(a2-ab+b2);(3)a3-b3=(a-b)(a2+ab+b2);(4)a2+2ab+b2=(a+b)2;(5)a2-2ab+b2=(a-b)2;(6)a3+3a2b+3ab2+b3=(a+b)3;(7)a3-3a2b+3ab2-b3=(a-b)3.以上公式必须熟记,牢牢掌握各自的特点.如果“一提、二代”都不能奏效,就应当采用分组分解.一般地,分组分解大致分为三步:(1)将原式的项适…  相似文献   

19.
由完全平方公式a2±2ab+b2=(a±b)2,可ab=1/4[(a+b)2-(a-b)2].(*) 解题中若能灵活、恰当地运用(*)式,常会收到化难为易,避繁就简的效果.现举例说明它的若干应用.  相似文献   

20.
可逆性思维是一种重要的思维方式,在初中数学教学中,逆用公式是训练学生的可逆性思维的常用方法之一。如下的“积化和差”公式: ab=((a b)/2)~2-((a-b)/2)~2是逆用两数和与两数差的平方公式导出的一个结果,在解题中多有应用,兹解如下两道熟悉的成题以作欣赏: 例1 已知实数a、b、c满足关系:a=6-b,c~2=ab-9。求证:a=b。(1983年天津市初中数学竞赛题)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号