首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A well-known method of eigenvalue assignment by static output feedback is improved. The main result is a parametric expression for the output feedback controller gain matrix explicitly characterized by the set of non-linear system of equations obtained for the state feedback design and the set of linear equations resulting from static output feedback consideration. In practice, it is shown that all the possible controllers can be generated for exactly assigning the prescribed eigenvalues of the nominal plant by appropriate software for solving the set of non-linear system of equations thus obtained. This in turn makes it possible to select the output feedback matrix with minimum norm or other constraints. Some numerical examples are presented to illustrate the design technique.  相似文献   

2.
A class of discrete-time nonlinear system and measurement equations having incrementally conic nonlinearities and finite energy disturbances is considered. A linear matrix inequality-based design approach is presented, which guarantees the satisfaction of a variety of performance criteria ranging from simple estimation error boundedness to dissipativity. Some simulation examples are included to illustrate and provide support to the proposed design methodology.  相似文献   

3.
带前馈输入观测——状态反馈控制系统的设计过程,涉及带符号变量的矩阵方程组求解,其通解一般难于求出,国内外大多数文献只能用递推法求其前几个采样值。借助MATLAB符号数学工具箱的有关函数,直接进行带符号变量矩阵运算和方程组求解,得到其准确的通解,系统设计全过程由编制的M文件自动完成。仿真结果表明,提出的设计方法和求解过程是正确的。  相似文献   

4.
In this paper, an event-triggered joint adaptive high-gain observer design method is proposed for a class of nonlinear systems that are characterized by an unknown parameter entering the system state equations. The main difficulty in the observer design is that the event-triggered mechanism (ETM) is affected by variable delayed-sampled data and the system’s unknown parameter. To overcome this difficulty, a closed-loop output predictor is incorporated into the design of the event-triggered mechanism to compensate for the sampling and the delay affecting the system outputs. To prevent the Zeno phenomenon, and to guarantee the exponential convergence of the observer, an exponential decay factor is considered in the ETM. The effectiveness of our proposed observer is demonstrated through numerical simulations, experiments and performances comparison with previous works in the literature.  相似文献   

5.
Components within micro-scale engineering systems are often at the limits of commercial miniaturization and this can cause unexpected behavior and variation in performance. As such, modelling and analysis of system robustness plays an important role in product development. Here, schematic bond graphs are used as a front end in a sensitivity analysis based strategy for modelling robustness in multi-physics micro-scale engineering systems. As an example, the analysis is applied to a behind-the-ear (BTE) hearing aid.By using bond graphs to model power flow through components within different physical domains of the hearing aid, a set of differential equations to describe the system dynamics is collated. Based on these equations, sensitivity analysis calculations are used to approximately model the nature and the sources of output uncertainty during system operation. These calculations represent a robustness evaluation of the current hearing aid design and offer a means of identifying potential for improved designs of multiphysics systems by way of key parameter identification.  相似文献   

6.
The space debris removal system (SDRS) of tethered space tug is modelled as a cable dragged flexible spacecraft. The main goal of this paper is to develop a dynamic modeling approach for mode characteristics analysis and forced vibration analysis of the planar motion of a cable dragged flexible spacecraft. Solar arrays of the spacecraft are modelled as multi-beams connected by joints with additional rotating spring where the nonlinear stiffness, damping and friction are considered. Using the Global mode method (GMM), a novel analytical and low-dimensional nonlinear dynamic model is developed for vibration analysis of SDRS to enhance the design capacity for better fulfillment of space tasks. The linear and nonlinear partial differential equations that governing transverse vibration of solar arrays, transverse and longitudinal vibrations of cable are derived, along with the matching and boundary conditions. The natural frequencies and analytical global mode shapes of SDRS are determined, and orthogonality relations of the global mode shapes are established. Dynamical equations of the system are truncated to a set of ordinary differential equations with multiple-DOF. The validity of the method is verified by comparing the natural frequencies obtained from the characteristic equation with those obtained from FEM. Interesting mode localization and mode shift phenomena are observed in mode analysis. Dynamic responses of the system excitated by fluctuation of attitude control torque and short-time attitude control torque are worked out, respectively. Nonlinear behaviors are observed such as hardening, jump and super-harmonic resonances. Residual vibration of the overall system with considering the varous values of nonlinear stiffness, damping coefficient and friction coefficient has shown that the nonlinearity of joints has a great influence on the vibration of the overall system.  相似文献   

7.
8.
The use of analogies is often advantageous in design and in the prediction of the behavior of complex systems. As developed previously, each component in the model (analog) corresponds to a specific component in the prototype (original system). However, this condition is a consequence of using linear relationships between model and prototype. If the condition of linearity is relaxed, the analog may have components which do not correspond to components in the prototype. Consequently, greater freedom is realized in design of the analog making it possible to overcome conflicting design requirements. Application of the nonlinear prediction equations to a forced vibrating system illustrates the general principles involved.  相似文献   

9.
This paper is concerned with robust stability analysis of second-order linear time-varying (SLTV) systems with time-varying uncertainties (perturbations). With the specific Lyapunov functions, a simple and neat algebraic criterion for testing uniformly asymptotic stability of SLTV systems are derived. Without transformation to a system of first-order equations, the new conditions are imposed directly on the time-varying coefficient matrices of the system. The main feature of the proposed algebraic criterion is that the uncertain coefficient matrices are time-varying and not necessarily symmetric. Finally, the proposed stability conditions are used to design the extending space structures system of the spacecraft. Simulation results are provided to illustrate the convenience and effectiveness of the proposed method.  相似文献   

10.
We study in this paper solutions to several kinds of linear bimatrix equations arising from pole assignment and stability analysis of complex-valued linear systems, which have several potential applications in control theory, particularly, can be used to model second-order linear systems in a very dense manner. These linear bimatrix equations include generalized Sylvester bimatrix equations, Sylvester bimatrix equations, Stein bimatrix equations, and Lyapunov bimatrix equations. Complete and explicit solutions are provided in terms of the bimatrices that are coefficients of the equations/systems. The obtained solutions are then used to solve the full state feedback pole assignment problem for complex-valued linear system. For a special case of complex-valued linear systems, the so-called antilinear system, the solutions are also used to solve the so-called anti-preserving (the closed-loop system is still an antilinear system) and normalization (the closed-loop system is a normal linear system) problems. Second-order linear systems, particularly, the spacecraft rendezvous control system, are used to demonstrate the obtained theoretical results.  相似文献   

11.
A general system of initial-value partial differential equations is classified into four categories based on the partial differential operators which define the equations. Specific combinations of the operators are termed “invariants” since they are common to all finite difference approximations to the system of equations. The “invariants” are used to a priori determine if one may formulate a stable difference approximation to a system of partial differential equations. This is in essence a numerical existence theory.  相似文献   

12.
This work presents a framework of iterative learning control (ILC) design for a class of nonlinear wave equations. The main contribution lies in that it is the first time to extend the idea of well-established ILC for lumped parameter systems to boundary tracking control of nonlinear hyperbolic distributed parameter systems (DPSs). By fully utilizing the system repetitiveness, the proposed control algorithm is capable of dealing with time-space-varying and even state-dependent uncertainties. The convergence and robustness of the proposed ILC scheme are analyzed rigorously via the contraction mapping methodology and differential/integral constraints without any system dynamics simplification or discretization. In the end, two examples are provided to show the efficacy of the proposed control scheme.  相似文献   

13.
Unified modeling and analysis of a proportional valve   总被引:4,自引:0,他引:4  
Developments in nonlinear control theory have made it possible to design controllers for systems having non-smooth nonlinearities in their dynamics. Hydraulic systems that use inexpensive proportional valves are examples of such systems, where nonlinearities arise due to valve geometry and spool imperfections. Without a proper valve model, however, nonlinear analysis and control of these hydraulic systems is not possible.We have developed nonlinear equations for a generic proportional valve model and have used them to obtain simplified flow rate expressions under generally accepted assumptions. These equations relate a set of geometric spool properties and physical model parameters to the flow rate through the valve ports. The development focuses on obtaining a single set of flow rate equations applicable to critical center, overlapped, and underlapped proportional valves. These unified model equations are useful for simulation and nonlinear controller design. We have also demonstrated that the errors incurred when using the unified valve model are dependent on the damping coefficient alone and are less than 10% in the frequency range within which most valves are used.  相似文献   

14.
The problem of reduced-order modelling is considered in connection with the design of restricted complexity controllers. The suggested reduction method develops in two phases: (i) a simple frequency response of the overall feedback control system is determined according to the design specifications; (ii) a reduced-order transference of the controlled plant is obtained by solving a linear set of equations in such a way that its behaviour approximates that of the original plant at frequencies which are meaningful for the overall transfer function derived in the first step (e.g. resonance and cutoff frequencies). An example shows how the procedure yields a reduced-order model suitable for designing robust controllers whereas other standard methods, based on properties of the plant only, fail.  相似文献   

15.
This paper deals with the problem of stabilization for a class of hybrid systems with time-varying delays. The system to be considered is with nonlinear perturbation and the delay is time varying in both the state and control. Using an improved Lyapunov–Krasovskii functional combined with Newton–Leibniz formula, a memoryless switched controller design for exponential stabilization of switched systems is proposed. The conditions for the exponential stabilization are presented in terms of the solution of matrix Riccati equations, which allow for an arbitrary prescribed stability degree.  相似文献   

16.
贾巍 《中国科技纵横》2014,(15):153-154
土粒比重为重要的物性指标,本文用大量的海洋浅层土质的土粒比重数据,通过线性回归分析土粒比重与液限的关系,给出了渤中区块土粒比重与液限的拟合最佳统计公式。并与美国南部墨西哥湾的经验公式在某一海域工程场地的测试结果进行对比分析,结果表明:本文所建立的统计公式对渤海地区的土粒比重计算准确性明显好于墨西哥湾的经验公式。所推荐的渤中区块的统计公式,可供以后的海洋工程所使用。  相似文献   

17.
A Chebyshev collocation method, an expansion method, has been proposed in order to solve the systems of higher-order linear integro-differential equations. This method transforms the IDE system and the given conditions into the matrix equations via Chebyshev collocation points. By merging these results, a new system which corresponds to a system of linear algebraic equations is obtained. The solution of this system yields the Chebyshev coefficients of the solution function. Some numerical results are also given to illustrate the efficiency of the method. Moreover, this method is valid for the systems of differential and integral equations.  相似文献   

18.
The bi-directionally coupled Lorenz systems are linked to the modeling of a coupled double loop thermosyphon system where the mass momentum and heat exchange are both considered. As the key parameters of the system, known as Rayleigh numbers, increase, the system of differential equations predicts typical flow dynamics in a thermosyphon from heat conduction to time-dependent chaos. In many applications including the thermosyphon systems, there are uncertainties associated with mathematical models such as unmodeled dynamics and parameter variations. Also, under the high heat environment for a thermosyphon, there exist external disturbances quantitatively linked to the Rayleigh numbers. All these sources constitute uncertainties to the dynamical system. Our objective is to design adaptive controllers to stabilize the chaotic flow in each thermosyphon loop with unknown system parameters and existence of uncertainties. The controllers consist of a proportional controller with an adaptive gain and a wavelet network that reconstructs the unknown functions representing the uncertainties. Explicit stability bounds and adaptive laws for the control parameters are obtained so that the coupled Lorenz systems are globally stabilized.  相似文献   

19.
The paper considers a process controlled by a system of delayed differential equations. Under certain assumptions, a control function is determined such that the zero solution of the system is asymptotically stable and, for an arbitrary solution, the integral quality criterion with infinite upper limit exists and attains its minimum value in a given sense. To solve this problem, Malkin’s approach to ordinary differential systems is extended to delayed functional differential equations, and Lyapunov’s second method is applied. The results are illustrated by examples, and applied to some classes of delayed linear differential equations.  相似文献   

20.
Bond graphs are an extremely useful modeling procedure for representing the actual energy exchange mechanisms of interacting dynamic systems. Governing state equations are straightforwardly obtained from the bond graph; however, for large structures, a restrictively large number of equations can result. A procedure is developed whereby the original equations are reduced to a form suitable for modal decomposition. The resulting modes are reinterpreted in bond graph form with the resulting model being an extremely accurate system representation while requiring only a fraction of the original number of equations. The procedure is demonstrated through example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号