首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A potential concern for individuals interested in using item response theory (IRT) with achievement test data is that such tests have been specifically designed to measure content areas related to course curriculum and students taking the tests at different points in their coursework may not constitute samples from the same population. In this study, data were obtained from three administrations of two forms of a Biology achievement test. Data from the newer of the two forms were collected at a spring administration, made up of high school sophomores just completing the Biology course, and at a fall administration, made up mostly of seniors who completed their instruction in the course from 6–18 months prior to the test administration. Data from the older form, already on scale, were collected at only a fall administration, where the sample was comparable to the newer form fall sample. IRT and conventional item difficulty parameter estimates for the common items across the two forms were compared for each of the two form/sample combinations. In addition, conventional and IRT score equatings were performed between the new and old forms for each o f the form sample combinations. Widely disparate results were obtained between the equatings based on the two form/sample combinations. Conclusions are drawn about the use o f both classical test theory and IRT in situations such as that studied, and implications o f the results for achievement test validity are also discussed  相似文献   

2.
Item analysis is an integral part of operational test development and is typically conducted within two popular statistical frameworks: classical test theory (CTT) and item response theory (IRT). In this digital ITEMS module, Hanwook Yoo and Ronald K. Hambleton provide an accessible overview of operational item analysis approaches within these frameworks. They review the different stages of test development and associated item analyses to identify poorly performing items and effective item selection. Moreover, they walk through the computational and interpretational steps for CTT‐ and IRT‐based evaluation statistics using simulated data examples and review various graphical displays such as distractor response curves, item characteristic curves, and item information curves. The digital module contains sample data, Excel sheets with various templates and examples, diagnostic quiz questions, data‐based activities, curated resources, and a glossary.  相似文献   

3.
This article considers potential problems that can arise in estimating a unidimensional item response theory (IRT) model when some test items are multidimensional (i.e., show a complex factorial structure). More specifically, this study examines (1) the consequences of model misfit on IRT item parameter estimates due to unintended minor item‐level multidimensionality, and (2) whether a Projection IRT model can provide a useful remedy. A real‐data example is used to illustrate the problem and also is used as a base model for a simulation study. The results suggest that ignoring item‐level multidimensionality might lead to inflated item discrimination parameter estimates when the proportion of multidimensional test items to unidimensional test items is as low as 1:5. The Projection IRT model appears to be a useful tool for updating unidimensional item parameter estimates of multidimensional test items for a purified unidimensional interpretation.  相似文献   

4.
With known item response theory (IRT) item parameters, Lord and Wingersky provided a recursive algorithm for computing the conditional frequency distribution of number‐correct test scores, given proficiency. This article presents a generalized algorithm for computing the conditional distribution of summed test scores involving real‐number item scores. The generalized algorithm is distinct from the Lord‐Wingersky algorithm in that it explicitly incorporates the task of figuring out all possible unique real‐number test scores in each recursion. Some applications of the generalized recursive algorithm, such as IRT test score reliability estimation and IRT proficiency estimation based on summed test scores, are illustrated with a short test by varying scoring schemes for its items.  相似文献   

5.
以概化理论和项目反应理论为代表的现代测验理论是在克服经典测验理论缺陷的基础上产生的。概化理论是在经典测验理论的基础上,引入实验设计和方差分析技术,对测评情境中的各类误差进行分解和控制的一种现代测量理论,其发展主要经历了一元概化理论和多元概化理论两个阶段。目前,其应用主要集中在评价、考试和评定量表编制三个领域。项目反应理论是在克服经典测验理论题目参数等指标的变异性基础上发展起来的一种现代测验理论,其发展经历了早期理论探索、理论初步形成和理论逐渐完善三个阶段。它主要用于处理分数等值和测验项目参数、测验和项目的质量的分析,剥离测验情境中评委特征对测验结果的影响,以及测查项目功能差异、编制适应性测验等。  相似文献   

6.
In judgmental standard setting procedures (e.g., the Angoff procedure), expert raters establish minimum pass levels (MPLs) for test items, and these MPLs are then combined to generate a passing score for the test. As suggested by Van der Linden (1982), item response theory (IRT) models may be useful in analyzing the results of judgmental standard setting studies. This paper examines three issues relevant to the use of lRT models in analyzing the results of such studies. First, a statistic for examining the fit of MPLs, based on judges' ratings, to an IRT model is suggested. Second, three methods for setting the passing score on a test based on item MPLs are analyzed; these analyses, based on theoretical models rather than empirical comparisons among the three methods, suggest that the traditional approach (i.e., setting the passing score on the test equal to the sum of the item MPLs) does not provide the best results. Third, a simple procedure, based on generalizability theory, for examining the sources of error in estimates of the passing score is discussed.  相似文献   

7.
In observed‐score equipercentile equating, the goal is to make scores on two scales or tests measuring the same construct comparable by matching the percentiles of the respective score distributions. If the tests consist of different items with multiple categories for each item, a suitable model for the responses is a polytomous item response theory (IRT) model. The parameters from such a model can be utilized to derive the score probabilities for the tests and these score probabilities may then be used in observed‐score equating. In this study, the asymptotic standard errors of observed‐score equating using score probability vectors from polytomous IRT models are derived using the delta method. The results are applied to the equivalent groups design and the nonequivalent groups design with either chain equating or poststratification equating within the framework of kernel equating. The derivations are presented in a general form and specific formulas for the graded response model and the generalized partial credit model are provided. The asymptotic standard errors are accurate under several simulation conditions relating to sample size, distributional misspecification and, for the nonequivalent groups design, anchor test length.  相似文献   

8.
A Monte Carlo simulation technique for generating dichotomous item scores is presented that implements (a) a psychometric model with different explicit assumptions than traditional parametric item response theory (IRT) models, and (b) item characteristic curves without restrictive assumptions concerning mathematical form. The four-parameter beta compound-binomial (4PBCB) strong true score model (with two-term approximation to the compound binomial) is used to estimate and generate the true score distribution. The nonparametric item-true score step functions are estimated by classical item difficulties conditional on proportion-correct total score. The technique performed very well in replicating inter-item correlations, item statistics (point-biserial correlation coefficients and item proportion-correct difficulties), first four moments of total score distribution, and coefficient alpha of three real data sets consisting of educational achievement test scores. The technique replicated real data (including subsamples of differing proficiency) as well as the three-parameter logistic (3PL) IRT model (and much better than the 1PL model) and is therefore a promising alternative simulation technique. This 4PBCB technique may be particularly useful as a more neutral simulation procedure for comparing methods that use different IRT models.  相似文献   

9.
Previous assessments of the reliability of test scores for testlet-composed tests have indicated that item-based estimation methods overestimate reliability. This study was designed to address issues related to the extent to which item-based estimation methods overestimate the reliability of test scores composed of testlets and to compare several estimation methods for different measurement models using simulation techniques. Three types of estimation approach were conceptualized for generalizability theory (GT) and item response theory (IRT): item score approach (ISA), testlet score approach (TSA), and item-nested-testlet approach (INTA). The magnitudes of overestimation when applying item-based methods ranged from 0.02 to 0.06 and were related to the degrees of dependence among within-testlet items. Reliability estimates from TSA were lower than those from INTA due to the loss of information with IRT approaches. However, this could not be applied in GT. Specified methods in IRT produced higher reliability estimates than those in GT using the same approach. Relatively smaller magnitudes of error in reliability estimates were observed for ISA and for methods in IRT. Thus, it seems reasonable to use TSA as well as INTA for both GT and IRT. However, if there is a relatively large dependence among within-testlet items, INTA should be considered for IRT due to nonnegligible loss of information.  相似文献   

10.
Data from a large-scale performance assessment ( N = 105,731) were analyzed with five differential item functioning (DIF) detection methods for polytomous items to examine the congruence among the DIF detection methods. Two different versions of the item response theory (IRT) model-based likelihood ratio test, the logistic regression likelihood ratio test, the Mantel test, and the generalized Mantel–Haenszel test were compared. Results indicated some agreement among the five DIF detection methods. Because statistical power is a function of the sample size, the DIF detection results from extremely large data sets are not practically useful. As alternatives to the DIF detection methods, four IRT model-based indices of standardized impact and four observed-score indices of standardized impact for polytomous items were obtained and compared with the R 2 measures of logistic regression.  相似文献   

11.
An approach called generalizability in item response modeling (GIRM) is introduced in this article. The GIRM approach essentially incorporates the sampling model of generalizability theory (GT) into the scaling model of item response theory (IRT) by making distributional assumptions about the relevant measurement facets. By specifying a random effects measurement model, and taking advantage of the flexibility of Markov Chain Monte Carlo (MCMC) estimation methods, it becomes possible to estimate GT variance components simultaneously with traditional IRT parameters. It is shown how GT and IRT can be linked together, in the context of a single-facet measurement design with binary items. Using both simulated and empirical data with the software WinBUGS, the GIRM approach is shown to produce results comparable to those from a standard GT analysis, while also producing results from a random effects IRT model.  相似文献   

12.
Empirical studies demonstrated Type-I error (TIE) inflation (especially for highly discriminating easy items) of the Mantel-Haenszel chi-square test for differential item functioning (DIF), when data conformed to item response theory (IRT) models more complex than Rasch, and when IRT proficiency distributions differed only in means. However, no published study manipulated proficiency variance ratio (VR). Data were generated with the three-parameter logistic (3PL) IRT model. Proficiency VRs were 1, 2, 3, and 4. The present study suggests inflation may be greater, and may affect all highly discriminating items (low, moderate, and high difficulty), when IRT proficiency distributions of reference and focal groups differ also in variances. Inflation was greatest on the 21-item test (vs. 41) and 2,000 total sample size (vs. 1,000). Previous studies had not systematically examined sample size ratio. Sample size ratio of 1:1 produced greater TIE inflation than 3:1, but primarily for total sample size of 2,000.  相似文献   

13.
Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items. When tests are equated across forms, researchers check for the stability of common items before including them in equating procedures. Stability is usually examined in relation to polytomous items' central “location” on the scale without taking into account the stability of the different item scores (step difficulties). We examined the stability of score scales over a 3–5-year period, considering both stability of location values and stability of step difficulties for common item equating. We also investigated possible changes in the scale measured by the tests and systematic scale drift that might not be evident in year-to-year equating. Results across grades and content areas suggest that equating results are comparable whether or not the stability of step difficulties is taken into account. Results also suggest that there may be systematic scale drift that is not visible using year-to-year common item equating.  相似文献   

14.
This article illustrates five different methods for estimating Angoff cut scores using item response theory (IRT) models. These include maximum likelihood (ML), expected a priori (EAP), modal a priori (MAP), and weighted maximum likelihood (WML) estimators, as well as the most commonly used approach based on translating ratings through the test characteristic curve (i.e., the IRT true‐score (TS) estimator). The five methods are compared using a simulation study and a real data example. Results indicated that the application of different methods can sometimes lead to different estimated cut scores, and that there can be some key differences in impact data when using the IRT TS estimator compared to other methods. It is suggested that one should carefully think about their choice of methods to estimate ability and cut scores because different methods have distinct features and properties. An important consideration in the application of Bayesian methods relates to the choice of the prior and the potential bias that priors may introduce into estimates.  相似文献   

15.
This study investigates a sequence of item response theory (IRT) true score equatings based on various scale transformation approaches and evaluates equating accuracy and consistency over time. The results show that the biases and sample variances for the IRT true score equating (both direct and indirect) are quite small (except for the mean/sigma method). The biases and sample variances for the equating functions based on the characteristic curve methods and concurrent calibrations for adjacent forms are smaller than the biases and variances for the equating functions based on the moment methods. In addition, the IRT true score equating is also compared to the chained equipercentile equating, and we observe that the sample variances for the chained equipercentile equating are much smaller than the variances for the IRT true score equating with an exception at the low scores.  相似文献   

16.
《教育实用测度》2013,26(2):125-141
Item parameter instability can threaten the validity of inferences about changes in student achievement when using Item Response Theory- (IRT) based test scores obtained on different occasions. This article illustrates a model-testing approach for evaluating the stability of IRT item parameter estimates in a pretest-posttest design. Stability of item parameter estimates was assessed for a random sample of pretest and posttest responses to a 19-item math test. Using MULTILOG (Thissen, 1986), IRT models were estimated in which item parameter estimates were constrained to be equal across samples (reflecting stability) and item parameter estimates were free to vary across samples (reflecting instability). These competing models were then compared statistically in order to test the invariance assumption. The results indicated a moderately high degree of stability in the item parameter estimates for a group of children assessed on two different occasions.  相似文献   

17.
The analytically derived asymptotic standard errors (SEs) of maximum likelihood (ML) item estimates can be approximated by a mathematical function without examinees' responses to test items, and the empirically determined SEs of marginal maximum likelihood estimation (MMLE)/Bayesian item estimates can be obtained when the same set of items is repeatedly estimated from the simulation (or resampling) test data. The latter method will result in rather stable and accurate SE estimates as the number of replications increases, but requires cumbersome and time-consuming calculations. Instead of using the empirically determined method, the adequacy of using the analytical-based method in predicting the SEs for item parameter estimates was examined by comparing results produced from both approaches. The results indicated that the SEs yielded from both approaches were, in most cases, very similar, especially when they were applied to a generalized partial credit model. This finding encourages test practitioners and researchers to apply the analytically asymptotic SEs of item estimates to the context of item-linking studies, as well as to the method of quantifying the SEs of equating scores for the item response theory (IRT) true-score method. Three-dimensional graphical presentation for the analytical SEs of item estimates as the bivariate function of item difficulty together with item discrimination was also provided for a better understanding of several frequently used IRT models.  相似文献   

18.
Many computerized testing algorithms require the fitting of some item response theory (IRT) model to examinees' responses to facilitate item selection, the determination of test stopping rules, and classification decisions. Some IRT models are thought to be particularly useful for small volume certification programs that wish to make the transition to computerized adaptive testing (CAT). The one-parameter logistic model (1-PLM) is usually assumed to require a smaller sample size than the three-parameter logistic model (3-PLM) for item parameter calibrations. This study examined the effects of model misspecification on the precision of the decisions made using the sequential probability ratio test (SPRT). For this comparison, the 1-PLM was used to estimate item parameters, even though the items' characteristics were represented by a 3-PLM. Results demonstrated that the 1-PLM produced considerably more decision errors under simulation conditions similar to a real testing environment, compared to the true model and to a fixed-form standard reference set of items.  相似文献   

19.
Domain scores have been proposed as a user-friendly way of providing instructional feedback about examinees' skills. Domain performance typically cannot be measured directly; instead, scores must be estimated using available information. Simulation studies suggest that IRT-based methods yield accurate group domain score estimates. Because simulations can represent best-case scenarios for methodology, it is important to verify results with a real data application. This study administered a domain of elementary algebra (EA) items created from operational test forms. An IRT-based group-level domain score was estimated from responses to a subset of taken items (comprised of EA items from a single operational form) and compared to the actual observed domain score. Domain item parameters were calibrated both using item responses from the special study and from national operational administrations of the items. The accuracy of the domain score estimates were evaluated within schools and across school sizes for each set of parameters. The IRT-based domain score estimates typically were closer to the actual domain score than observed performance on the EA items from the single form. Previously simulated findings for the IRT-based domain score estimation procedure were supported by the results of the real data application.  相似文献   

20.
Cognitive diagnosis models (CDMs) continue to generate interest among researchers and practitioners because they can provide diagnostic information relevant to classroom instruction and student learning. However, its modeling component has outpaced its complementary component??test construction. Thus, most applications of cognitive diagnosis modeling involve retrofitting of CDMs to assessments constructed using classical test theory (CTT) or item response theory (IRT). This study explores the relationship between item statistics used in the CTT, IRT, and CDM frameworks using such an assessment, specifically a large-scale mathematics assessment. Furthermore, by highlighting differences between tests with varying levels of diagnosticity using a measure of item discrimination from a CDM approach, this study empirically uncovers some important CTT and IRT item characteristics. These results can be used to formulate practical guidelines in using IRT- or CTT-constructed assessments for cognitive diagnosis purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号