首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
放缩法证明不等式主要依据不等式的传递性.利用放缩法证明不等式的关键在于如何放缩,放缩度是放缩法的关键.下面就以以下几个例子,谈谈几种常规的放缩手段.一、添上(或去掉)某些项,从而达到放缩的目的:【例1】已知a,b,c,为非负实数,试证明:a2 ab b2 b2 bc c2≥a b c.证明:∵a2 ab b2=(a 2b)2 34b2≥a 2b①b2 bc c2=(c 2b)2 34b2≥c 2b②① ②得a2 ab b2 b2 bc c2≥a b c.得证.二、通过对分子,分母的放大或缩小从而达到放缩的目的:【例2】已知a,b,c,d∈R S=a ba d b cb a c cd b d da c,求证:11aa b d>a b ac dbb c a>a b …  相似文献   

2.
我们知道,放缩法是证明不等式的重要方法之一。所谓放缩法,是指如下的做法:要证 ab,将a缩小至c,通过证明c≥b间接证明原不等式成立,这叫“缩小法”。有时单方面放大或缩小还不足以解决问题,则需要两方面同时放大、缩小。因此,这种证法统称放缩法。  相似文献   

3.
放缩法是指在不等式证明过程中,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式。简单讲就是:若要证明a〈c,可以先证a〈b,即将a放大到b,然后证明b≤c,由不等式的传递性可得a〈c。用放缩性证明不等式看似简单,实际难度大、技巧性强,要考虑如何放缩,放多大或缩多小为宜等问题。本文重点叙述一些放缩技巧,供广大师生参考。  相似文献   

4.
一、证明不等式例1已知n为大于1的自然数,求证:(1+13)(1+15)…(1+12n-1)>2n+1√2.证明因为欲证的不等式的左边和右边都为正,故可构造数列狖an狚,并令an=(1+13)(1+15)…(1+12n-1)2n+1√2.显然,an>0,a2=835√>1.若对任意n≥2,nN,都有an>1,则原不等式得证.∵an+1an=(1+13)(1+15)…(1+12n+1)·2n+1√2n+3√·(1+13)(1+15)…(1+12n-1)=2n+2(2n+1)(2n+3)√>2n+2(2n+1)+(2n+3)2=1(n≥2),∴an+1>an>an-1>…>a2>1,故原不等式成立.二、解不等式例2解不等式4x+log3x+x2>5.解设f(x)=4x+log3x+x2,则其定义域为(0,+∞),且在定义域内是增函数.又∵f(1)=5…  相似文献   

5.
1逆向思维的教材原型题与近年高考题 例1 (新课标选修4-5第25页习题 2.2第2题)已知a,b,c,∈R+,用综合法证: (ab+a+b+1)(ab+ac+bc+c2)≥16abc. 证明 (ab十a+b+1)(ab+ac+bc+c2)=(a+1) (b+1)(a+c) (b+c)≥2√a×2b×2√ac×2√bc=16abc. 例2 (2010年重庆文科第10题)若a,b,c>0,且a2+2ab+2ac+4bc=12,则ab+c的最小值是().  相似文献   

6.
袁拥军 《高中生》2008,(20):25-26
一、放缩法放缩法是指在证明不等式时,把不等式的一边适当放大或缩小,然后再利用不等式的传递性来完成证题的一种方法.放缩法的途径主要有:①舍去一些正数项或负数项;②通过迭代证明;③利用题目前一问的结论证明;④利用数列(或函数)的单调性证明;  相似文献   

7.
不等式是初等数学的重要内容之一,在初等数学和高等数学中都广为应用,证明不等式的方法很多,但有的比较烦琐,如果用导数便简单明了,本文试说明导数在证明不等式中的应用.一、用微分中值定理证明不等式微分中值定理:若函数f(x)满足条件:(i)在闭区间〔a,b〕上连续;(ii)在开区间(a,b)内可导,则在区间(a,b)内至少存在一点C,使得f(b)-f(a)=f′(c)(b-a)若不等式的一端是某一个函数F(x)在两点之差F(b)-F(a),则在区间〔a,b〕上利用微分中值定理,再将F′(C)适当放大或缩小.  相似文献   

8.
贵刊 2 0 0 3年第 4期《轮换对称不等式的证明技巧》一文中例 8和例 1 0的证明犯了一个常识性错误 .为方便叙述 ,把原文摘录如下 :例 8 已知a ,b,c∈R+ ,求证 :ab+c+ba +c+ca +b≥ 32 .分析 :将常数 32 均匀分解到左式各项中 ,待证不等式等价于ab+c-12 +ba +c-12 +ca +b-12 ≥ 0 ,( )由a ,b ,c的对称性 ,不妨设a≥b≥c>0 ,则( )左边 =2a -b -c2 (b+c) +2b -a -c2 (a +c) +2c -a -b2 (a +b)≥2a -b -c+2b -a -c+2c-a -b2 (a +b) =0 .很明显 ,原作者在这里使用了放缩技巧 ,但当 2b-a -c<0时 ,放缩方向刚好相反 ,因而证明是错误的 .同样在…  相似文献   

9.
由于证明不等式的方法多种多样,因此它既是不等式这一章节的重点,也是高考命题的热点.为了提高同学们的发散思维能力及创新能力,本文特精选了一道例题,利用一题多解的形式来帮助同学们拓展解题思路.例题已知a、b∈R+,且a+b=1,求证:(a+1a)(b+b1)≥245.证明一(综合法)因为a、b∈R+,且a+b=1,所以(a+1a)(b+b1)=(a+41a+43a)(b+41b+43b)≥(1+43a)(1+43b)=1+1261ab≥1+4(a2+1b)2=245.证明二(分析法)要证(a+1a)(b+b1)≥245,即证4(a2+1)(b2+1)≥25ab,也即证4a2b2+4a2+4b2+4≥25ab,整理得4a2b2+4(a+b)2-8ab+4≥25ab,即4a2b2-33ab+8≥0,即证(4ab-1)(ab…  相似文献   

10.
汪晋超 《甘肃教育》2005,(1):100-100
在证明不等式的过程中,有时根据需要将不等式的一端放大或缩小,利用不等式的传递性达到证题的目的。这种证题方法叫放缩法。放缩法是不等式证明的重要变形方法之一,其使用的主要方法有:  相似文献   

11.
1963年,一道经典的不等式题在莫斯科数学竞赛中应运而生,原题如下:设 a,b,c∈R+,求证:a/(b+c)+b/(c+a)+c/(a+b)≥3/2.①这个不等式的证法很多,下面笔者给出两个最简单的证明过程.证法1:要证原不等式成立,只须证 a/(b+c)+1+b/(c+a)+1+c/(a+b)+1≥9/2,即只须证[2(a+b+c)](1/(b+d)+1/(c+a)+1/(a+b))≥9,由柯西不等式易知上式显然成立,所以原不等式  相似文献   

12.
(理若a,b任六’,。、k任N,且正<刀,则a”十b”乡a丙b“一‘+a”一‘b“当且仅当a=b时等式成立. 例1.若p、q任R气p3十q“=2求证P+q气2. 证:由定理, (,+叮)3二刀“+口3+3(尹’,+尹叮’) 百尹3+夕3+3(,3+夕3)=8, .’.p+q毛2. 枉·{2 .a,b,c任R十, 则a“+乙“+。“升3ab。. 泣:事实上,a3+b3+。一(a‘+b3+b“+c吕十c,+a吕)1,(a’乙‘一“/)“卜今哭。卜b(+e Za十。a“)=音一〔。‘“2+·”+“·’十·”干·(。:+“·,〕、3。“二(竹者单位:江苏建湖一县芦沟中学)不等式a~2+b~2≥2ab的又一推广@肖秉林$江苏建湖县芦沟中学 @沈文兆$江苏建湖县…  相似文献   

13.
不等式的形式是多种多样的,因而不等式的证明方法灵活,综合性较强,难度较大。课本着重介绍了比较法、综合法和分析法。教师在教学中应控制难度,不能拔得过高。通过证明不等式三种基本方法的教学,应着重培养学生的逻辑推理能力,以及分析问题和解决问题的能力。利用课本中典型习题的价值,是扎实基础、培养能力的一条很好的途径。高中课本第二册(必修)不等式一章习题6.2第1题,求证???a2+b???2≤a2+2b2①〔当且仅当a=b时取等号〕。这道题的证明很简单,只要对不等式定理a2+b2≥2ab稍加变形就可得证。下面我们就不等式①作一些研究,以开发这道题目…  相似文献   

14.
不等式的证明历来是高考热点问题,其中有一类是与数列的前n项和有关的问题.形如∑i=n1ai>f(n)或∑i=n1aic可以先证a>b,即将a缩小到…  相似文献   

15.
命题:直角三角形弦的立方大于勾股立方和. 设勾,股,弦分别为a,b,。,则需证。,)as+b3。证1:’.’ aZ+bz)Zab,3a“b“>aZb“, :,3a‘b’+3a“b峨)Za’b“. .,. a6+3a4b2+3a2b4+bs )a”+Za“b“+b”, 即(aZ+bZ)“>(a3+b3)2,又c名=a“+b“, 亦即e3>a“+乙“. 证2:因e>a,e>b,故 cs=c(a忍+bZ) >a,aZ+b,62=a3+b”. 证3:如图,分别以a,b,c为棱作立方体.那么, bZ=岔e, aZ=ee- 而b3相似文献   

16.
数列不等式是近年高考重点考查的内容之一,常以压轴题形式出现.放缩法破解数列不等式就是利用不等式的传递性,对照证题目标进行合情合理的放大或缩小的过程.在数学解题中涉及2个数或式的大小比较、不等式证明时,为了达到求证(解)目的,常对给出的式子进行适当变形(放大或缩小),放缩得当,过程简洁且有独到之处。  相似文献   

17.
命题试证对任意a、b∈R,有max{|a+b|,|a-b|,|1-b|}≥21.分析(1)题目含义:在题设条件下,要证明|a+b|,|a-b|,|1-b|三者之中的最大数不小于21,由于a、b取值的任意性,即是要证明三者之中至少有一个不小于21.因此可以得到.(2)证题思路①若假设三者均小于12,则必有矛盾;②若假设三者之中有其二小于21,则另一必不小于21;③若假设三者之中有其一小于21,另二之中必至少有一不小于21;④利用两数中的最大数不小于其平均数.证明方法1假设|a+b|<12、|a-b|<21、|1-b|<12,下面利用a+b、a-b、1-b之间的关系及绝对值不等式构造矛盾:2=|(a+b)-(a-b)+2(1-b)|≤…  相似文献   

18.
尹华焱老师在文[1]中给出不等式猜想HCX-28是:孙文彩、杨学枝两位老师在文[2]中指出该猜想是一个比较强的结果!至今没有看到关于它的肯定或否定的证明.笔者通过研究发现该式的左端是成立的,下面给出左端成立的证明.证明要证s2+12Rr+30r2≤∑ωa,只要证s2+12Rr+30r2≤(∑ωa)2,即s2+12Rr+30r2≤∑ωa2+2∑ωbωc由文[3]的结果111∑ωa≥R+2r及abc=4Rrs,?=rs和三角形恒等式:8a b c()()()abcsωωω=b+c c+a?a+b,(b+c)(c+a)(a+b)=2s(s2+2Rr+r2)可得2228(2)b c2R r rs∑ωω≥s++Rr+r故只要证222222123016(2)a2s Rr rR r rs++≤∑ω+s++Rr…  相似文献   

19.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

20.
不等式的证明是国内外数学竞赛中的热点问题 ,尽管这些不等式的形式各异 ,但很多不等式的证明却可以用两个基本不等式而巧妙地得到解决 .本文所述的基本不等式为 :a + b≥ 2 ab(a,b∈ R+ )及a1+ a2 +… + ann ≥ n a1a2 … an(ai ∈ R+ ) .下面看一些具体例子 .1 用 a + b≥ 2 ab(a,b∈ R+ )证明竞赛中不等式  例 1 设 x1,x2 ,x3,… ,xn均为正数 ,求证 :x21x2+ x22x3+ x23x4+… + x2n- 1xn+ x2nx1≥ x1+ x2+… + xn.(1 984年全国高中数学联赛题 )证明 :由基本不等式 a + b≥ 2 ab(a,b∈R+ )得x22x1+ x1≥ 2 x2 ,x23x2+ x2 ≥ 2 x3,… …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号