首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are few graduate programs available for pursuing a doctorate in anatomy where students gain specific training in gross anatomy dissection and the responsibilities of a medical educator. In light of this fact, the University of Kentucky created a Graduate Certificate in Anatomical Sciences Instruction in 2006. This 12‐credit hour curriculum includes detailed training in gross anatomy and/or neuroscience courses, practicum experiences, a seminar class in pedagogical literature, and a course in educational strategies for the anatomical sciences. The award of certificate completion affirms that the candidate has demonstrated faculty‐supervised proficiency in anatomy dissection, instruction in anatomy topics, and teaching strategies for anatomy. Seventeen graduate students have earned the certificate since its inception; nine students accepted teaching positions in anatomy following their graduate training and currently nine certificate graduates have assistant (six) or associate (three) professor positions in academia. In 2016, an anonymous survey including Likert‐style and open‐ended questions was emailed to all certificate graduates. Graduates favorably responded (each question averaged 4.4 or greater out of 5) that the certificate increased their awareness of teaching‐faculty responsibilities, adequately prepared them for teaching‐related duties, and positively contributed toward their first employment. Graduates indicated that the lecturing and dissection experience, awareness of faculty responsibilities, and job preparation (e.g., teaching philosophy development) were the most helpful aspects of the certificate. These results indicate that the Graduate Certificate in Anatomical Sciences Instruction is viewed by its graduates and their employers as a valuable teaching credential that can be attained alongside a basic science degree. Anat Sci Educ 11: 516–524. © 2018 American Association of Anatomists.  相似文献   

2.
Fewer and fewer programs are training graduate students and postdoctoral fellows in the classical anatomical disciplines. Nonetheless, there remains a need at all levels of clinical and basic science education for skilled instructors of anatomy, histology, and embryology. Two sessions at the 2006 annual meeting of the American Association of Anatomists (AAA) explored whether a system of accreditation would benefit students, institutions, and training programs. Although the value of accreditation was controversial, three challenges for the various anatomical societies emerged from these discussions: (1) To identify the skills and knowledge that should be shared among all anatomists, and the more specific skills and knowledge needed for the diverse settings in which anatomists work. (2) To address the historical inattention of institutions to the training of educators. (3) To develop strategies to lobby institutions and national organizations to support the training and work of educators in the anatomical sciences. One approach to meeting these challenges would be to develop guidelines for training programs. These guidelines would help graduate students seek the training they need, provide institutions with a benchmark to assess or develop training programs, and provide the basis for focusing lobbying efforts targeted at institutions or existing accreditation bodies. Anat Sci Ed 1:60–67, 2008. © 2008 American Association of Anatomists.  相似文献   

3.
Student struggles in gross anatomy coursework at the professional level can result in hours of remediation along with a need to allot time and other resources by both the student and the faculty. Since this course typically occurs in the first semester of the first year, programs can turn to admissions data to try to determine which of these students may struggle. This study looked at two years of medical (n = 280) and dental (n = 78) students to determine if there is a relationship between pre-admissions anatomy coursework and performance in gross anatomy at the professional school level. Students provided data regarding their past anatomy coursework and final grades in professional school gross anatomy courses were obtained. In addition, students responded to questions regarding their feelings of preparation and how they valued the prior anatomy coursework as it related to the professional course. Statistical analysis showed no difference in final course grade between students with and without prior anatomy in either program. Counter to the numerical data, 96.6% of the students in the study recommended an anatomy course prior to pursuing a health science degree. The primary reasons given for this recommendation were the benefits of repeated content exposure, knowledge of the anatomy terminology, and decreased stress regarding the course. The results from this study suggest that the benefits of prior anatomy may be seen more in the students’ stress and quality of life rather in the numerical performance of course grades.  相似文献   

4.
Despite extensive experience teaching residents, surgeons are an untapped resource for educating medical students. We hypothesized that by involving surgeons as teachers earlier in the medical school curriculum, medical students' interest in surgery will increase and their opinions of surgeons will improve. Five programs designed to involve surgeons as educators in the medical school curriculum were implemented. The first program, started in 2008, introduced surgical faculty into the first-year medical student anatomy dissection laboratories. Other programs initiated in 2008 included: Surgical Clinical Correlates in Anatomy, which involved faculty teaching through cadaver surgery; Clinical Pathologic Conferences in Anatomy, a surgeon-led conference based on clinical cases; and a women's faculty-student mentorship program. Table Rounds, a surgeon-led anatomy review that used clinical scenarios to quiz students was begun in 2009. All five programs were successfully integrated into the medical school curriculum. While student opinion of surgeons as educators improved, there were no significant changes in student interest in surgery as a career nor change in performance on written examinations over the Anatomy content covered by the surgeons. Surgical faculty and trainees can be integrated into the medical school curriculum. Involving surgeons as educators earlier in the medical school curriculum may have longer term effects than could be observed in this study. At a minimum, the experience improved student opinion of surgeons as educators.  相似文献   

5.
Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science‐dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of a course wherein the primary learning and teaching objective is to integrate basic science anatomy knowledge with clinical education. The course was developed through collaboration by a multi‐specialist course development team (composed of both basic scientists and physicians) and was founded in current adult learning theories. The course was designed to be widely applicable to multiple future specialties, using current published reports regarding the topics and clinical care areas relying heavily on anatomical knowledge regardless of specialist focus. To this end, the course focuses on the role of anatomy in the diagnosis and treatment of frequently encountered musculoskeletal conditions. Our iterative implementation and action research approach to this course development has yielded a curricular template for anatomy integration into clinical years. Key components for successful implementation of these types of courses, including content topic sequence, the faculty development team, learning approaches, and hidden curricula, were developed. We also report preliminary feedback from course stakeholders and lessons learned through the process. The purpose of this report is to enhance the current literature regarding basic science integration in the clinical years of medical school. Anat Sci Educ 7: 379–388. © 2014 American Association of Anatomists.  相似文献   

6.
Ultrasound (US) can enhance anatomy education, yet is incorporated into few non‐medical anatomy programs. This study is the first to evaluate the impact of US training in gross anatomy for non‐medical students in the United States. All 32 master's students enrolled in gross anatomy with the anatomy‐centered ultrasound (ACUS) curriculum were recruited. Mean Likert ratings on pre‐ and post‐course surveys (100% response rates) were compared to evaluate the effectiveness of the ACUS curriculum in developing US confidence, and gauge its impact on views of US. Post‐course, students reported significantly higher (P < 0.001) mean confidence ratings in five US skills (pre‐course versus post‐course mean): obtaining scans (3.13 ±1.04 versus 4.03 ±0.78), optimizing images (2.78 ±1.07 versus 3.75 ±0.92), recognizing artifacts (2.94 ±0.95 versus 3.97 ±0.69), distinguishing tissue types (2.88 ±0.98 versus 4.09 ±0.69), and identifying structures (2.97 ±0.86 versus 4.03 ±0.59), demonstrating the success of the ACUS curriculum in students with limited prior experience. Views on the value of US to anatomy education and to students' future careers remained positive after the course. End‐of‐semester quiz performance (91% response rate) provided data on educational outcomes. The average score was 79%, with a 90% average on questions about distinguishing tissues/artifacts, demonstrating positive learning outcomes and retention. The anatomy‐centered ultrasound curriculum significantly increased confidence with and knowledge of US among non‐medical anatomy students with limited prior training. Non‐medical students greatly value the contributions that US makes to anatomy education and to their future careers. It is feasible to enhance anatomy education outside of medical training by incorporating US. Anat Sci Educ 10: 348–362. © 2016 American Association of Anatomists.  相似文献   

7.
A concern on the level of anatomy knowledge reached after a problem‐based learning curriculum has been documented in the literature. Spatial anatomy, arguably the highest level in anatomy knowledge, has been related to spatial abilities. Our first objective was to test the hypothesis that residents are interested in a course of applied anatomy after a problem‐based learning curriculum. Our second objective was to test the hypothesis that the interest of residents is driven by innate higher spatial abilities. Fifty‐nine residents were invited to take an elective applied anatomy course in a prospective study. Spatial abilities were measured with a redrawn Vandenberg and Kuse Mental Rotations Test in two (MRT A) and three (MRT C) dimensions. A need for a greater knowledge in anatomy was expressed by 25 residents after a problem‐based learning curriculum. MRT A and C scores obtained by those choosing (n = 25) and not choosing (n = 34) applied anatomy was not different (P = 0.46 and P = 0.38, respectively). Percentage of residents in each residency program choosing applied anatomy was different [23 vs. 31 vs. 100 vs. 100% in Family Medicine, Internal Medicine, Surgery, and Anesthesia, respectively; P < 0.0001]. The interest of residents in applied anatomy was not driven by innate higher spatial abilities. Our applied anatomy course was chosen by many residents because of training needs rather than innate spatial abilities. Future research will need to assess the relationship of individual differences in spatial abilities to learning spatial anatomy. Anat Sci Ed 2:107–112, 2009. © 2009 American Association of Anatomists.  相似文献   

8.
Anatomical sciences are foundational to the health professions, yet little is known about the qualifications of anatomy educators at the graduate and professional level in the United States. Moreover, there is concern that the number of qualified anatomy educators being trained may be insufficient to meet the growing demand posed by new and expanded programs in medicine and allied health specialties. The authors surveyed anatomists from across the country to (i) characterize the educational credentials of current anatomy educators and (ii) assess the perceived need for education-focused postdoctoral positions or formal mentorships to prepare anatomists for teaching-intensive faculty positions. To probe the survey responses more deeply, one-on-one interviews were conducted with eight individuals selected to represent a diverse sample of respondents in terms of institution, gender, and academic rank. Results indicate that 30–40% of educators at the graduate level and approximately 60% of those at the undergraduate level lack graduate coursework in histology, embryology, and neuroanatomy. Forty-five percent of respondents had completed a postdoctoral fellowship. Eighty-six percent replied “yes/maybe” to the question of whether an anatomy education postdoctoral fellowship would benefit doctoral graduates. The top 3 reasons for this recommendation were to (i) establish independent educational research, (ii) improve a publication record, and (iii) gain additional teaching experience. Notable weaknesses of education-focused postdoctoral training were related to finances, fear of exploitation, and undervaluing of teaching. Moving forward, postdoctoral fellowships and other forms of postgraduate training may represent a key strategy for training anatomists in the current educational climate. Anat Sci Educ 00: 000–000. © 2018 American Association of Anatomists.  相似文献   

9.
Anatomy education provides students with opportunities to learn structure and function of the human body, to acquire professional competencies such as teamwork, interpersonal skills, self-awareness, and to reflect on and practice medical ethics. The fulfillment of this wide potential can present challenges in courses that are part of an integrated curriculum and shorter than traditional courses. This new reality, together with students' increasing concern about the stresses within medical education, led to efforts at Harvard Medical School to implement practical steps toward an optimal learning environment in anatomy. These were based on core elements of ethical anatomy education and principles of trauma-informed care. Anatomy is conceptualized here as the “first clinical discipline,” with relational interactions between anatomical educators, medical students, and body donors/patients. Essential prerequisites for the implementation of this work were support by the medical school leadership, open partnership between engaged students and faculty, faculty coordination, and peer-teaching. Specific interventions included pre-course faculty development on course philosophy and invitations to students to share their thoughts on anatomy. Student responses were integrated in course introductions, combined with a pre-dissection laboratory visit, an introductory guide, and a module on the history and ethics of anatomy. During the course, team-building activities were scheduled, and self-reflection encouraged, for example, through written exercises, and elective life-body drawing. Students' responses to the interventions were overall positive, but need further evaluation. This first attempt of a systematic implementation of an optimal learning environment in anatomy led to the identification of areas in need of adjustment.  相似文献   

10.
Authors report here a survey of medical student feedback on the effectiveness of two different anatomy curricula at Christian Medical College, Vellore, India. Undergraduate medical students seeking the Bachelor in Medicine and Bachelor in Surgery (M.B.B.S.) degrees were divided into two groups by the duration of their respective anatomy curriculum. Group 1 students had completed a longer, 18‐month curriculum whereas Group 2 counterparts followed a shorter, 12‐month curriculum. Students' responses to a questionnaire were studied. Analysis of feedback from Groups 1 and 2 contrasted the effectiveness of the two anatomy curricula. The coverage of gross anatomy was rated adequate or more than adequate by 98% of Group 1 and 91% of Group 2. A desire for greater emphasis on gross anatomy teaching was expressed by 24% of Group 1 and 50% of Group 2 (P = 0.000). Two‐thirds of all students felt that the one‐year program was not adequate, and 90% of Group 1 and 74% of Group 2 felt that clinically oriented anatomy teaching required more emphasis. Dissection was helpful or very helpful for 94% of Group 1 and 88% of Group 2. This study suggests that a better understanding of gross anatomy was gained from a course of longer duration (18 months with 915 contact hr vs. 12 months with 671 contact hr). Students who completed the longer anatomy course had greater appreciation of the need for clinically oriented anatomy teaching and dissection. Anat Sci Educ 2:179–183, 2009. © 2009 American Association of Anatomists.  相似文献   

11.
Morehouse School of Medicine chose to restructure its first year medical curriculum in 2005. The anatomy faculty had prior experience in integrating courses, stemming from the successful integration of individual anatomical sciences courses into a single course called Human Morphology. The integration process was expanded to include the other first year basic science courses (Biochemistry, Physiology, and Neurobiology) as we progressed toward an integrated curriculum. A team, consisting of the course directors, a curriculum coordinator, and the Associate Dean for Educational and Faculty Affairs, was assembled to build the new curriculum. For the initial phase, the original course titles were retained but the lecture order was reorganized around the Human Morphology topic sequence. The material from all four courses was organized into four sequential units. Other curricular changes included placing laboratories and lectures more consistently in the daily routine, reducing lecture time from 120 to 90 minute blocks, eliminating unnecessary duplication of content, and increasing the amount of independent study time. Examinations were constructed to include questions from all courses on a single test, reducing the number of examination days in each block from three to one. The entire restructuring process took two years to complete, and the revised curriculum was implemented for the students entering in 2007. The outcomes of the restructured curriculum include a reduction in the number of contact hours by 28%, higher or equivalent subject examination average scores, enhanced student satisfaction, and a first year curriculum team better prepared to move forward with future integration.  相似文献   

12.
There is little consensus among programs that train physician assistants (PAs) regarding how much time should be devoted to the study of anatomy, what should be included, or how it should be taught. Similar concerns led us to redesign anatomy for medical students and introduce clinically engaged anatomy, an approach designed in collaboration with clinical faculty. This approach presents anatomy entirely within the context of common clinical cases. This report examines whether clinically engaged anatomy could be adapted to the PA program, where students cover the basic sciences in half the time as medical students. We offered a modified version of clinically engaged anatomy to PA students in which time spent in self-directed learning activities was reduced relative to medical students. We compared their scores on an examination of long-term recall to students who took the previous course. Two classes who took clinically engaged anatomy, scored the same or significantly higher on every portion of the examination (P < 0.05). Students expressed high satisfaction with the course (Likert scale, 4.3-4.8/5 points). Compared to medical students who took clinically engaged anatomy, the data suggest that the tradeoff for reducing the time spent in self-directed learning was reduced skills in applying structure-function relationships and spatial reasoning to clinical problems. The data suggest clinically engaged anatomy can be effective in various educational settings, and can be readily adapted to clinical programs that vary in the depth that anatomy is covered. Nonetheless, careful assessments are needed to determine if the necessary tradeoffs are consistent with the goals of the profession.  相似文献   

13.
Human anatomy in physical therapy programs is a basic science course serving as a foundation for subsequent clinical courses. Integration of anatomy with a clinical emphasis throughout a curriculum provides opportunities for reinforcement of previously learned material. Considering the human cadaver laboratory as a fixed cost to our program, we sought opportunities to add value to the resource via vertical integration into a clinical skills course taught later in the curriculum. We designed an opportunity for second-year physical therapy students to revisit the human anatomy laboratory to study select clinical musculoskeletal tests and the associated anatomy in a clinically relevant context. Students performed select orthopedic ligament test on human cadavers, then incised specific structures and repeated the tests. Students were able to feel and visualize the function of pertinent anatomy associated with the clinical tests. Ninety-five percent of respondents reported that the ligament stress testing experience enhanced their understanding of orthopedic clinical tests with 91% reporting an enhanced understanding of anatomy related to specific clinical tests. Likewise, the experience was perceived as enjoyable and valuable with 86% of respondents reporting the experience as enjoyable and 100% responding the experience should continue as part of the curriculum.  相似文献   

14.
A challenge for new residents and senior residents preparing for board examinations is refreshing their knowledge of basic science disciplines, such as human gross anatomy. The Department of Orthopaedics at the University of Utah School of Medicine has for many years held an annual Orthopedic Resident Anatomy Review Course during the summer months for all of its residents. The primary purpose of the course is to renew competencies in basic science disciplines so that incoming residents more quickly reach a level of functional proficiency and to afford senior residents a platform to teach their junior colleagues. Before 2005, this course was conducted with minimal participation from anyone outside of the Department of Orthopaedics. Many of the residents voiced concerns that the educational benefits were not proportionate to the time invested. To improve the teaching of orthopedic-related anatomy, an educational collaboration between the Departments of Neurobiology and Anatomy and Orthopaedics was established in 2004 and continues to the present time. The major objectives of refining the course pedagogy, developing a Course Manual and Dissection Guide, and evaluating the results by administering a course survey questionnaire are described in this article. Implementation of all facets of the revised course has resulted in better participation by orthopedic faculty and more favorable reviews by the participating residents. Based on current levels of interest and positive comments from course participants, the Anatomy and Orthopedic faculty course directors plan to continue to develop course materials and pedagogy.  相似文献   

15.
Didactic and laboratory anatomical education have seen significant reductions in the medical school curriculum due, in part, to the current shift from basic science to more clinically based teaching in North American medical schools. In order to increase medical student exposure to anatomy, with clinical applicability, a student-run initiative called surgically oriented anatomy prosectors (SOAP) club was created within the extracurricular program at the Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada. SOAP invites surgeons and residents from various surgical specialties to demonstrate, on a cadaver, a surgical procedure of their choosing. During the demonstration, the anatomy, as it relates to the surgical procedure, is discussed. The students then break into smaller groups to examine the relevant anatomy on the cadavers, during which time the discussion is broadened. The group continues the conversation in a social environment with refreshments. SOAP is one of the most popular extracurricular clubs with 65% of first and second year medical students registered as members. The high demand for SOAP, along with the positive participant feedback, may be due to its utilization of the principle of education through recreation, which seeks to provide opportunities for learning seamlessly throughout all facets of life. It also demonstrates the desire, amongst certain medical students, to learn applied anatomy, particularly within a surgical context.  相似文献   

16.
Starting in 2004, a medical school gross anatomy course faced with a 30% cut in hours went through an extensive redesign, which transformed a traditional dissection course into a course with a clinical focus, learning societies, and extensive on‐line learning support. Built into the redesign process was an extensive and ongoing assessment process, which included student focus groups, faculty development, surveys, and examinations. These assessments were used formatively, to enhance the course from year to year, and summatively, to determine how well the course was meeting the new learning objectives. The assessments from focus groups and faculty development prompted changes in support structures provided to students and the training and preparation of faculty. Survey results showed that, after student satisfaction declined the first year, satisfaction increased steadily through the fourth iteration as the course gained acceptance by students and faculty alike. There was a corresponding increase in the performance of students on course examinations. An additional examination given to students one and a half and three years after their anatomy course ended demonstrated the redesigned course's long‐term effectiveness for retaining anatomical knowledge and applying it to clinical cases. Compared to students who took the original course, students who took the shorter, more clinical course performed as well, or better, on each section of the examination. We attribute these positive results to the innovative course design and to the changes made based on our formative assessment program. Anat Sci Educ, 2010. © 2010 American Association of Anatomists.  相似文献   

17.
Professionalism and ethics have gained widespread recognition as competencies to be fulfilled, taught, and assessed within medical education. The role of the anatomy course in developed nations has evolved over time and now encompasses multiple domains, including knowledge, skills, and the inculcation of professionalism and ethics. The Medical Council of India recently recommended the integration of professionalism teaching in undergraduate medical curricula. The authors investigated whether the initial orientation lectures and instructions given by faculty at the outset of undergraduate medical anatomy courses throughout India served a “hidden curriculum” regarding professionalism practices, and whether these orientation messages could serve as an early exposure to medical professionalism and ethics for medical students. An online survey was carried out among 102 anatomy faculty members across India requesting details about specific professionalism protocols and instructions regarding behavior in the dissection hall that are routinely given to preclinical students, as well as the importance that they placed on professional behavior. It was found that most faculty members regularly instruct students regarding expected behavior during the anatomy course, including dissection practices. These instructions stress attributes of professionalism like humanism, accountability, and honesty. However, there needs to be a more concentrated effort by educators to prohibit such unprofessional practices like dissection hall photography, and better information is required regarding biomedical waste disposal. Despite the absence of clear guidelines for professionalism teaching in medical education in India, the existing framework of anatomy education provides an opportunity to introduce the concept of professionalism to the first‐year medical student. This opportunity may provide an early foundation for designing a professionalism‐integrated curriculum. Anat Sci Educ 10: 433–443. © 2017 American Association of Anatomists.  相似文献   

18.
Human anatomy knowledge is a core requirement for all health care clinicians. There is a paucity of information relating to anatomy content and delivery in Australian chiropractic programs. The aim of this study was to describe anatomy teaching in Australian chiropractic programs, utilizing a survey which was distributed to all four programs, requesting information on: anatomy program structure, delivery methods, assessment, teaching resources, and academic staff profile at their institution. The survey was undertaken in 2016 and documented practices in that academic year. All four institutions responded. There was a reported difference in the teaching hours, content, delivery and assessment of anatomy utilized in Australian chiropractic programs. Anatomy was compulsory at all four institutions with the mean total of 214 (SD ± 100.2) teaching hours. Teaching was undertaken by permanent ongoing (30%) and sessional academic staff, and student to teacher ratio varied from 15:1 to 12:1. A variety of teaching resources were utilized, including human tissue access, either as prosected cadavers or plastinated body parts. The results of this survey confirm that anatomy has an established place in chiropractic education programs in Australia and while curricular variations exist, all programs had similar course design, delivery, and assessment methods. This study confirmed the provision of a strong foundation in topographical anatomy and neuroanatomy, while other anatomical sciences, such as histology and embryology were not consistently delivered. Formalization of a core anatomy curriculum together with competency standards is needed to assist program evaluation and development, and for accreditation purposes.  相似文献   

19.
Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives: for the student to successfully gain a solid knowledge base of human anatomy and to develop and hone clinical reasoning skills. In a basic anatomy course, clinical case discussions based on underlying anatomic anomalies or abnormalities are the major means to teach students clinical reasoning skills. By identifying, classifying, and analyzing the clinical data given, a student learns to methodically approach a clinical case and formulate plausible diagnoses. Practicing and perfecting clinical problem‐solving skills should be a major objective of the anatomy curriculum. Such clinical reasoning skills are indeed crucial for the successful and expert practice of medicine. Anat Sci Ed 1:267–268, 2008. © 2008 American Association of Anatomists.  相似文献   

20.
Despite human (HUM) and veterinary (VET) medical institutions sharing the goal of educating future clinicians, there is little collaboration between them regarding curricular and pedagogical practices during the preclinical/basic science training years. This may be, at least in part, due to a lack of understanding of each type of curriculum. This study presents data about curricula, student populations, pedagogical methodologies applied, and anatomy educators' training at both HUM and VET institutions. Preclinical curricula, admissions criteria, and student demographics were analyzed for 21 institutions in the United States having both HUM and VET schools. This dataset was augmented by a questionnaire sent to anatomists internationally, detailing anatomy curricula, pedagogies applied, and anatomy educators' training. Many curricular similarities between both training programs were identified, including anatomy education experiences. However, VET programs were found to include more preclinical coursework than HUM programs. Students who matriculate to VET or HUM schools have similar academic records, including prerequisite coursework and grade point average. Median HUM class size was significantly larger, and the percentage of women enrolled in VET institutions was significantly higher. Training of anatomy educators was identical with one exception: VET educators are far more likely to hold a clinical degree. This study elucidates the substantial similarities between VET and HUM programs, particularly in anatomy education, underscoring the potential for collaboration between both types of programs in areas such as interprofessional education, bioethics, zoonotic disease management, and postgraduate training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号