首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在众多的组合式中 ,有一个相当漂亮的结构 :∑rn=1·Crn- 1 + 2·Crn- 2 + 3· Crn- 3+…+ ( n- r) Crr.(规定 Cnm中 ,若 m相似文献   

2.
对于任何一个正整数N_r,都可以表示为N_r=a_r·10~(r-1)+a_(r-1)·10~(r-2)+…+a_i·10~((?)-1)+…+a_2·10+a_1,其中r代表N_r的位数,a_i代表N_r的第i位上的数字。对N_r~(?)(n为正整数)末几位数的变化进行归纳,可以发现,N_r~(?)与N_r的末几位数相同时的一些规律。  相似文献   

3.
本文给出任意项级数收敛判定方法:如果级数∑_(n=1) a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)∞ a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)sinπ/2(a_0n∞sinπ/2(a_0nk+a_1nk+a_1n(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)sinπ/2n∞sinπ/2n(2s+1)/n收敛,级数∑_(n=1)(2s+1)/n收敛,级数∑_(n=1)sinπ/2n∞sinπ/2n(2s)/n发散,其中s∈N.  相似文献   

4.
通过研究,得知 sum i=1 to n+1 a_ic_n~(i-1)的结果与数列有密切的关系,有以下二个定理:定理1:当数列{a_i}是等比数列时,sum i=1 to n+1 a_ic_n~(i-1)=a_i(1+q)~n证明如下:∵{a_i}是等比数列,不妨设公比为 qsum i=1 to n+1 a_ic_n~(i-1)=a_1c_n~0+a_2c_n~+1+a_3c_n~2+…+a_bc~(n-1)_n+a_(n+1)c~n_n=a_1c~0_n+a_1c~1_nq+a_1c~2_nq~2+…+a_1c~n_nq~n=a_1(1+q)~q  相似文献   

5.
我们知道:如果a_i∈R~+ i=1,2,…,n,则((a_1+a_2+…a_n)/n≥(a_1a_2…a_n)~(1/n)当且仅当a_1=a_2=a_3…=a_n时取“=”号),被称为“均值定理”。许多极(最)值问题,利用这个平均值不等式常常很简洁地得到解决,本文通过数例。对利用其求极(最)值时常见错误进行剖析。  相似文献   

6.
请看下面的无穷数列: (1) 1,4,7,10,13,16,…3n-2,… (2) 1×4,4×7,7×10,…(3n-2)(3n+1)… (3) 1×4×7,…(3n-2)(3n+1)(3n+4)… (4) 1×4×7×10,4×7×10×13,… (3n-2)(3n+1)(3n+4)(3n+7)…数列(1)是一个等差数列,学生能迅速求出其前n项之各,但要求出数列(2),(3),(4),…等的前n项之和却成困难。然而,学生们在研读许多数学课外书刊或资料的时候,又常常遇到它们。为了满足学生的求知欲:培养他们进行数学活动的兴趣和能力,笔者利用课外数学活动时间,引导他们对类数列前n项之和的求法进行了专题探讨,师生一道建立了一般的求和公式。现将活动过程整理成文,供同志们参考。定义一个无穷数列 a_1a_2…a_n,a_2a_3…a_(r+1),…,a_na_(n+1)…a_(n+r+1),…叫做  相似文献   

7.
1.找出正整数n和a_1,a_2,…a_n.使得a_1 a_2 … a_n=1979 而且使它们的乘积a_1a_2…a_n尽可能大。解:这最大的乘数不超过4。因为我们能够用增加积2 3取代5,3 3取代6,4 3取代7等等。因此我们也能用增加积3·3取代2·4,和以3·3取代2·2·2等等。综合这些观察得到这样的事实:1979=3·659 2,因而n=660,a_i中除了一个等于2外,其余的都等于3。 2.存在一个连续的实函数f(x),要对所有实数满足f(f(x))=kx~9,那么对于k要建立怎样的必要和充分的条件。  相似文献   

8.
设有两个数列a_1≤a_2≤…≤a_n, (1)b_1≤b_2≤…≤b_n (2)在(1)中每任取一数 a_(ik)与(2)中每任取一数 b_(jk)。相乘 a_(ik)·b_(jk),并将这样得到的乘积相加:sum ∑ from k-1 to n a_(ik)·b_(jk),(3)则排序原理断言:存一切形如(3)的和中,以a_1b_1+a_2b_2+…+a_nb_n为最大,而以  相似文献   

9.
第一天 (1993年1月7日8:00-12:30) 一、设n是奇数,试证存在2n个整数 a_1,a_2,…,a_n,b_1,b_2,…,b_n,使得对任意一个整数k,00,在下列条件下, k_1+k_2+…+k_r=k,k_i∈N,1≤r≤k.求a~k_1+a~k_2+…+a_r~k的最大值. 三、设圆k和k_1同心,它们的半径分别为R和R_1,R_1>R.四边形ABCD内接于圆k,四边形A_1B_1C_1D_1内接于圆k_1.点A_1,B_1,C_1,D_1分别在射线CD,DA,AB,BC上.求证  相似文献   

10.
文[1]将一个无理不等式推广为:定理1 设正整数 n≥3,a_i∈R~ (i=1,2,…,n),实数 k≥(n-1)/n,则有∑(a_1/(a_2 a_3… a_n))~k≥n/(n-1)~k,当且仅当 a_1=a_2=…=a_n 时取等号.(∑表示对 a_1,a_2,…,a_n 的循环和)文[2]给出如下两个定理:定理2 若 a_i>0(i=1,2,…,n),s=,则(其中m≥1,n≥2,n∈N,p≥0,A>a_i~p).(1)  相似文献   

11.
<正>柯西不等式:设a_1,a_2,…,a_n;b_1,b_2,…,b_n是两组实数,则有n∑k=1a_k2·n∑k=1b_k2·n∑k=1b_k2≥(n∑k=1a_kb_k)2≥(n∑k=1a_kb_k)2。其中等号成立当且仅当a_1:a_2:…:a_n=b_1:b_2:…:b_n。推论:设a_1,a_2,…,a_n是正实数,则(a_1+a_2+…+a_n)(1/a_1+1/a_2+…+1/a_n)≥n2。其中等号成立当且仅当a_1:a_2:…:a_n=b_1:b_2:…:b_n。推论:设a_1,a_2,…,a_n是正实数,则(a_1+a_2+…+a_n)(1/a_1+1/a_2+…+1/a_n)≥n2,其中等号成立当且仅当a_1=a_2=…=a_n。  相似文献   

12.
<正> 其中k、n为正整数,且k≤n,根号内的分子部分是n个正数每次不重复取k个乘积之和,共有c_n~k项。为了方便,我们把上面的根式记为∑_n~k (a_1,a_2,…,a_u)或∑_n~k。 引理:∑_n~1≥∑_n~_n~2≥…≥∑_n~n.等号当且仅当a_1=a_2=…=a_n时成立。 以上定义和引理见文[1].下面证明定理。  相似文献   

13.
《数学通报》2004年第7期问题1504是:已知x,y,z∈(0,+∞),x+y+z=1,求1x2+y12+z82的最小值.我们将它一般化,得到定理设p,r,n∈N,n≥2,ai,xi∈(0,+∞),i=1,2,…,n,∑xip=1(以下总略去求和限),则(∑xarii)min=(∑aαi)1α,α=pp+r.证引入参数λ>0,使如下平均不等式成立:aixir+…+xariip上+λxip+…+λxipr个≥(p+r)p+raipxipr·λrxipr.即(*)xairi≥p+p raip+prλp+rr-rλpxip(当且仅当xi=(aλi)p+1r,1≤i≤n时等号成立).由于∑xip=1,即∑xpi=∑(aλi)p+pr=1λp+pr∑aiα=λ-α∑aαi=1.从而(*)两边对i从1到n求和,有∑xarii≥α-1·λp+rr∑ai…  相似文献   

14.
(本讲适合初中) 首先,我们介绍存在性原理,这是指如下关于实数的命题: 命题1 设有n(n≥2)个实数a_1,a_2,…,a_n,如果a_1 a_2 … a_n=A,则必存在实数a_i,a_j(1≤i,j≤n),使得 a_i≥A/n,a_j≤A/n。  相似文献   

15.
k~m=a_1k a_2k(k 1) … a_(m-1)k…(k m-2) k…(k m-1), (2) (2)中命k=-r(r=1,2,…,m-1),得a_1,…,a_r的递归式  相似文献   

16.
两恒等式a_n=a_1·(a_2/a_1)……(a_n/a_(n-1))及a_n=a_1+(a_2-a_1)+…+(a_n-a_(n-1))分别被称之为等比恒等式与等差恒等式。在处理很多数列问题时,若能恰到好处地利用这两个恒等式,则会给求解带来很多方便,下面略举几例。 例1 (2002年浙江等21省市高考题)设数列{a_n}满足a_(n+1)=a_n~2-na_n+1,n∈N~+。 (1)当a_1=2时,求a_2、a_3、a_4,并由此猜想出a_n的一个通项公式。 (2)当a_1≥3时,证明对所有的n≥1有: (i)a_n≥n+2; (ii)1/(1+a_1)+1/(1+a_2)+…+1/(1+a_n)≥1/2。 简解:(1)略。 (2)(i)用数学归纳法:①当n=1,a_1≥3=1+2结论成立。  相似文献   

17.
设数列{x_n}满足x_n=a_1x_(n-1)+…+a_rx_(n-r)(1),其中a_1,a_2,…,a_r为常数,x_1,x_2,…,x_r已知,现在我们来寻求{x_n}的通项。 方法一 设有等比数列1,q,q~2,…,q~(n-1),…(2),公比q满足q~(n-1)=a_1q~(n-2)+a_2q~(n-3)+…+a_rq~(n-r-1)(3),则将(1)中的x_n以q~(n-1)代替,(1)成立.由(3):q~r-a_1q~(r-1)-…-a_(r-1)q-a_r=0(4),如果(4)有r个不同的单根q_1,q_2,…,q_r,容易验证c_1q~(n-1)+c_2q~(n-1)+…+c_rq-r~(n-1)(5)满足(1),其中c_1,c_2,…,c_r满足:  相似文献   

18.
我们知道,无穷递缩等比数列{a_1q~(n-1)}的各项和公式为∑∞k=0a1qk=1a-1q(|q|<1).对于一类各项是分式形式的竞赛题,若各项都能变换成1-a1q(|q|<1)的形式,就可以逆用该公式,再结合幂平均值不等式1n∑ni=1ai≤m1n∑ni=1aim或平均值不等式巧妙地解题.下面举例说明.例1设任意实数x、y满足|x|<1,|y|<1.求证:11-x2+1-1y2≥1-2xy.(第19届莫斯科数学奥林匹克)分析:由x2<1,y2<1,知1-1x2和1-1y2能展成无穷递缩等比数列各项和的形式.证明:因|x|<1,|y|<1,所以,x2<1,y2<1.于是,有11-x2=1+x2+x4+…,11-y2=1+y2+y4+….从而,1-1x2+1-1y2=(1+x2+x4+…)+(1+y2…  相似文献   

19.
设十位数为a_0a_1a_2…a_9,由条件可知:a_0+a_1+a_2+…+a_9=0×a_0+1×a_1+…+9×a_9, ∴a_0=a_2+2a_3+…+(K-1)a_k1+…+8a_9。①若a_0=1,则a_2=1,a_3=a_4=…=a_9=0。此时十位数中0的个数7≠1=a_0,与题意矛盾。同理,当a_0=2时,因为a_2≠0,只能是a_2=2,a_3=a_4=…=a_9=0,此时,十位数中0的个数7≠2=a_0,与题意矛盾。  相似文献   

20.
本文通过巧妙地变换,将a_(n+1)=pa_n+Aa_n+Br~n转换成b_(n+1)=pb_n型,从而较简捷地求出其通项。主要结论为: 命题Ⅰ:若数列{a_n}:a_(n+1)=pa_n+Aq_n+Br~n,(p,q,r,A,B均为常数且(p-q)(p-r)≠0),则: a_n=(a_1+x+y)·p~(n-1)-x·q~(n-1)-y·r~(n-1) (1) 其中  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号