首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Previous research suggests that in classes that take an integrated approach to science, technology, engineering, and math (STEM) education, students tend to engage in fulfilling goals of their engineering design challenges, but only inconsistently engage with the related math and science content. The present research examines these inconsistences by focusing on student engagement, or effort, towards math and science concepts while working on an engineering challenge, through the lens of expectancy-value theory. Specifically, we examine how students’ perceptions of the value of math and science and expectancy for success with the math and science relate to the efforts they put towards using math and science while working on engineering challenges. Our results suggest that subjective task value significantly predicts efforts towards both math and science, whereas neither expectancy, nor the interaction between expectancy and value predicted effort. We argue that integrated learning environments need to help students understand how the domains of math, science, and engineering support their work in fulfilling the engineering project design goals. In other words, we argue that we, as educators, must help students to recognise the value of each of the domains addressed within STEM integrated learning environments. This paper discusses strategies for accomplishing this goal.  相似文献   

2.
The purpose of this research was to develop and test a model of factors contributing to science, technology, engineering, and mathematics (STEM) learning and career orientation, examining the complex paths and relationships among social, motivational, and instructional factors underlying these outcomes for middle school youth. Social cognitive career theory provided the foundation for the research because of its emphasis on explaining mechanisms which influence both career orientations and academic performance. Key constructs investigated were youth STEM interest, self-efficacy, and career outcome expectancy (consequences of particular actions). The study also investigated the effects of prior knowledge, use of problem-solving learning strategies, and the support and influence of informal educators, family members, and peers. A structural equation model was developed, and structural equation modeling procedures were used to test proposed relationships between these constructs. Results showed that educators, peers, and family-influenced youth STEM interest, which in turn predicted their STEM self-efficacy and career outcome expectancy. STEM career orientation was fostered by youth-expected outcomes for such careers. Results suggest that students’ pathways to STEM careers and learning can be largely explained by these constructs, and underscore the importance of youth STEM interest.  相似文献   

3.
Historically, the mission of science, technology, engineering, and mathematics (STEM) schools emphasized providing gifted and talented students with advanced STEM coursework. However, a newer type of STEM school is emerging in the United States: inclusive STEM high schools (ISHSs). ISHSs have open enrollment and are focused on preparing underrepresented youth for the successful pursuit of advanced STEM studies. They promise to provide a critical mass of nontraditional STEM students, defying stereotypes about who does STEM and creating positive STEM identities. In this article, we advance a conceptual framework designed to systematically capture the qualities of ISHSs that can provide exciting new possibilities for students and communities. An iterative review of the literature suggests 10 critical components that may work together across 3 dimensions: design, implementation, and outcomes. Our goal is to apply this framework in various school models to better understand the opportunity structures that emerge and to create a theory of action of ISHSs.  相似文献   

4.
This paper analyzes the outcomes of an innovative technology experience for students and teachers (ITEST) project, Mayor’s Youth Technology Corps (MYTCs) in Detroit, MI, which was funded by the NSF ITEST program. The MYTC project offered an integration of two technologies, geographic information system (GIS) and information assurance (IA), to stimulate students’ interests in science, technology, engineering, and mathematics (STEM) career pathways and learning opportunities among high schools in underserved communities of the City of Detroit. Pre- and post-surveys demonstrated that the MYTC students showed growth in nearly every area covered in the surveys, including dispositions about STEM career and learning. A STEM career goal measure showed that overall interest in having a career in STEM increased 9 % throughout the program, with an additional 10 % for those who participated in an internship experience, the capstone of the MYTC project.  相似文献   

5.
Can engaging college students in client-centered projects in science, technology, engineering, and mathematics (STEM) coursework increase interest in STEM professions? The current study explored the effectiveness of project-based learning (PjBL) courses on student attitudes, major choice, and career aspirations in STEM. Framed in expectancy-value and social cognitive career choice models, we examined the effect of engaging in at least one authentic, project-based course during the first four semesters of college on student STEM attitudes and career aspirations in a quasi-experimental study with a sample of (N = 492) natural science and engineering students. STEM self-efficacy and subjective task value variables (STEM attainment, intrinsic and utility value of STEM courses, and relative cost associated with engaging in STEM courses) were examined as mediators of the relationship between classroom project-based experiences and STEM career aspirations. Gender and underrepresented minority status were also examined. We found that engaging in at least one project-based course during the first four semesters affected student perceptions of STEM skills, perceptions of the utility value of participating in STEM courses, and STEM career aspirations. Furthermore, we found that the effect of project-based courses on STEM career aspirations was mediated by STEM skills and perceptions of course utility. The effect of PjBL was not moderated by race or gender. We highlight areas of future research and the promise of PjBL for engaging students in STEM professions.  相似文献   

6.
The purpose of this study is to investigate student- and school-level factors that help to explain the difference in the nature of science (NOS) views. Overall, the design of this study is correlational. The sample consisted of 3062 students enrolled in the sixth, seventh, and eighth grades of elementary schools in Turkey. A hierarchical linear modelling was selected as a modelling technique. This study has established the importance of the student's socioeconomic background, learning approaches undertaken, self-efficacy, and motivational goals in the formation of their NOS views. The findings reveal that quality of both the physical infrastructure of schools and the educational resources in schools, parent educational levels, student achievement, self-efficacy, experience of meaningful learning, and learning goal orientation are positively related to different dimensions of student NOS views. Additionally, performance goal orientation and rote learning approaches have a negative relationship with different dimensions of student NOS views.  相似文献   

7.
ABSTRACT

Present federal education policies promote learning in science, technology, engineering, and mathematics (STEM) and the participation of minority students in these fields. Using longitudinal data on students in Florida and North Carolina, value-added estimates in mathematics and science are generated to categorize schools into performance levels and identify differences in school STEM measures by performance levels. Several STEM-relevant variables show a significant association with effectiveness in mathematics and science, including STEM teacher turnover, calculus and early algebra participation, and mathematics and science instructional indices created from survey items in the data. Surprisingly, a negative association between students’ STEM course participation and success in STEM is consistently documented across both states, in addition to low participation of underrepresented minority students in successful schools in STEM.  相似文献   

8.
ABSTRACT

Although there has been some success with programmes that aim to increase STEM involvement by women and underserved minorities, science educators continue to seek ways to promote students’ interest in STEM. This study builds on social cognitive career theory (SCCT) and the theory of enclothed cognition to assess the impact of wearing lab coats on 5th-grade students. Students were assigned to a treatment group (that wore lab coats, n = 106) or a control group (that did not wear lab coats, n = 110) for 10 science classes taught by their classroom science teacher. Students were assessed pre and post to the intervention with a survey designed to measure science interest, recognition from others as a science person, science self-efficacy, and STEM career goals. Results showed students’ interest in science was not significantly changed due to wearing the lab coat, but the lab coats did have significant effects on students’ perceived recognition by others as being a science learner. Furthermore, those treatment students with low self-efficacy (compared to those with high self-efficacy) and those with who did not report having access to a parent with a STEM career had significant increases in perceptions of self-efficacy in science.  相似文献   

9.
ABSTRACT

The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid sample of 600 volunteer Taiwanese high school students participated in this survey by responding to the Scientific Epistemic Beliefs Instrument (SEBI) and the Goal Orientations in Learning Science Instrument (GOLSI). Through both exploratory and confirmatory factor analyses, the SEBI and GOLSI were proven to be valid and reliable for assessing the participants' scientific epistemic beliefs and goal orientations in learning science. The path analysis results indicated that, by and large, the students with more sophisticated epistemic beliefs in various dimensions such as Development of Knowledge, Justification for Knowing, and Purpose of Knowing tended to adopt both Mastery-approach and Mastery-avoidance goals. Some interesting results were also found. For example, the students tended to set a learning goal to outperform others or merely demonstrate competence (Performance-approach) if they had more informed epistemic beliefs in the dimensions of Multiplicity of Knowledge, Uncertainty of Knowledge, and Purpose of Knowing.  相似文献   

10.
ABSTRACT

The purpose of this study was to answer the following two questions: (1) Do significant differences exist in high-school learning experience, interests, self-efficacy, and career aspirations between male and female science, technology, engineering, and mathematics (STEM) students? (2) Can high-school learning experiences, interests, and self-efficacy significantly predict career aspirations, and do differences exist between male and female STEM students? This study highlighted the gender gap between male and female university students who had already chosen STEM majors with similar academic ability. A total of 407 first-year students were surveyed at a 4-year research university in Taiwan. For the data analysis, a t-test and multiple regression analysis were used, and the findings indicated that male STEM students had greater family support than their female counterparts. The variable of task value could significantly predict STEM career aspirations for both male and female students, whereas the variable of STEM course self-efficacy could only significantly predict that of male students. In conclusion, the findings highlighted that the motivation of task value was a vital factor for predicting STEM career aspirations, whereas the factor of family support was the main gap between male and female STEM students in terms of their high-school learning experiences.  相似文献   

11.

Girls’ attitudes towards mathematics can impact their achievement and career choices in STEM fields. Can the introduction of inquiry-based learning (IBL) in mathematics classes generate positive associations between girls’ perceptions of the learning environment and their attitudes towards mathematics? Based in the United Arab Emirates, this study provided important information about the relationships between learning environment factors central to an inquiry method and student engagement. Data collection involved administering two surveys to female mathematics students (N?=?291) in four schools: one to assess students’ perceptions of the learning environment and another to assess students’ attitudes towards mathematics. Positive and statistically-significant (p?<?.01) associations emerged between learning environment factors important to an inquiry approach and students’ attitudes. These findings provide important information about how IBL might improve girls’ attitudes towards mathematics classes and whether IBL environments are related to their attitudes.

  相似文献   

12.
The present study was designed to identify and characterize the major factors that influence entering science teacher candidates’ preferences for different types of instructional activities, and to analyze what these factors suggest about teacher candidates’ orientations towards science teaching. The study involved prospective teachers enrolled in the introductory science teaching course in an undergraduate science teacher preparation program. Our analysis was based on data collected using a teaching and learning beliefs questionnaire, together with structured interviews. Our results indicate that entering science teacher candidates have strong preferences for a few activity types. The most influential factors driving entering science teacher candidates’ selections were the potential of the instructional activities to motivate students, be relevant to students’ personal lives, result in transfer of skills to non‐science situations, actively involve students in goal‐directed learning, and implement curriculum that represents what students need to know. This set of influencing factors suggests that entering science teacher candidates’ orientations towards teaching are likely driven by one or more of these three central teaching goals: (1) motivating students, (2) developing science process skills, and (3) engaging students in structured science activities. These goals, and the associated beliefs about students, teaching, and learning, can be expected to favor the development or enactment of three major orientations towards teaching in this population of future science teachers: “motivating students,” “process,” and “activity‐driven.”  相似文献   

13.
14.
In a technologically driven society, math and science students in the United States are falling further and further behind their international counterparts, resulting in an influx of STEM focused, reformed K-12 schools, including schools focused on project-based learning (PBL). This article reports a study of the effectiveness of PBL on high school students' performance on state mandated standardized mathematics and science achievement measures. Manor New Tech High School is a nationally recognized model STEM school, with a diverse student population, where all instruction is delivered through PBL. Although there is ample research suggesting that PBL is advantageous for increasing STEM learning compared to conventional teaching approaches, there is a lack of studies randomly assigning students to receive PBL. Further, some of the effects observed for students attending project-based schools could be due to a self-selection bias for students or parents that choose such an alternative learning environment. This study addresses both of these concerns and found that students taught through PBL, as a group, matched performance of conventionally taught students on all science 11th grade and mathematics 9th, 10th, and 11th grade TAKS achievement measures and exceeded performance by a scale score increase of 133 for the 10th grade science TAKS measure by (B = 133.082, t = 3.102, p < .05). One possible explanation of the differences observed in this study could be the TAKS instrument used to capture student math and science achievement that interprets “real-life applications” of content differently between math and science questions. These results align with literature on the effects of PBL and deepen our understanding of these effects by providing a controlled study with random assignments to the PBL experience. Future research looking at the effect of PBL on achievement on the PISA could be beneficial in identifying benefits of PBL implementation in schools.  相似文献   

15.
Because the importance of science, technology, engineering and mathematics (STEM) education continues to be recognised around the world, we developed and validated an instrument to assess the learning environment and student attitudes in STEM classrooms, with a specific focus on engineering and technology (E&T) activities in primary schools. When a four-scale instrument assessing classroom cooperation and involvement and student enjoyment and career interest was administered to 1095 grade 4–7 students in 36 classes in 10 schools, data analyses supported its factorial validity and reliability. When the new questionnaire and understanding scales were used to evaluate E&T activities, statistically-significant pretest–posttest changes in career interest and understanding (with large effect sizes ranging from 0.70 to 0.81 standard deviations) supported the efficacy of the instructional activities.  相似文献   

16.
This is a mix methods follow‐up study in which we reconfirm the findings from an earlier study [Vedder‐Weiss & Fortus [ 2011 ] Journal of Research in Science Teaching, 48(2), 199–216]. The findings indicate that adolescents' declining motivation to learn science, which was found in many previous studies [Galton [ 2009 ] Moving to secondary school: Initial encounters and their effects. Perspectives on Education, 2(Primary‐secondary Transfer in Science), 5–21. Retrieved from www.wellcome.ac.uk/perspectives ; Osborne, Simon, & Collins, [2003] International Journal of Science Education 25(9), 1049–1079], is not an inevitable phenomenon since it appears not to occur in Israeli democratic schools. In addition to reinforcing previous results in a different sample, new results show that the differences between the two school types are also apparent in terms of students' self‐efficacy in science learning, students' perceptions of their teachers' goals emphases, and students' perception of their peers' goals orientation. Quantitative results are accompanied by rich verbal examples of ways in which students view and articulate their own and their teachers' goal emphases. Content analysis of students' interviews showed that students in traditional schools are directed more towards goals that are external and related to the outcome of learning in comparison to democratic school students who are motivated more by goals that are internal and related to the process of learning. Structure analysis of these interviews suggests that democratic school students experience a greater sense of autonomy in their science learning than traditional school students do. Implications for research on students' motivation are discussed, such as considering not only the teacher and the classroom but also the school culture. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 1057–1095, 2012  相似文献   

17.
Research on intrinsic and extrinsic future goals has mostly focused on their impact on wellbeing with relatively lesser attention being focused on key learning outcomes. This study investigates how the pursuit of different future goals (i.e., society‐, family‐, career‐, wealth‐, and fame‐oriented goals) affects students’ self‐control, and whether self‐control mediates the relationship between future goals and distal learning outcomes (i.e., students’ affect to school and academic achievement 1 year later). The study adopted a longitudinal design involving 8,354 secondary students from 16 schools in Hong Kong. Students had to complete English and Mathematics achievement tests and answer questionnaires measuring the key variables. Structural equation modeling analysis indicated intrinsic future goals were more adaptive compared to extrinsic ones. In particular, results revealed the importance of society‐oriented goal on self‐control and distal learning outcomes. Theoretical and practical implications are discussed.  相似文献   

18.
19.
The hypothesis in this study was that different types of multiple‐goal learners would have different patterns of learning. A sample of 797 adult distance learners enrolled in different programs offered by a distance learning university in Hong Kong completed a questionnaire assessing their goals, use of strategies, motivational beliefs, and attitudes towards the course they were doing. Two‐stage cluster analyses found a group of single‐goal learners (mastery focused) and three groups of multiple‐goal learners with different focuses in their goal profiles: performance focus, work focus, and multiple focuses. These four clusters of learners differed in terms of use of learning strategies, regulatory strategies, motivational beliefs, and attitudes towards the course. Learners focusing on work‐related goals or performance goals achieved better examination results than did those focusing on multiple goals or solely on mastery goals.  相似文献   

20.
In this paper we develop a model for the capabilities required by principals for effective Science, Technology, Engineering and Mathematics (STEM) leadership. The model underpinned a large national cross-sectional research and development project across Australian states in both primary and secondary schools. This model is developed via synthesis of research literature across leadership and STEM education. The model consists of five dimensions of principals' STEM capability: (1) STEM discipline-specific and integrated knowledge and practices; (2) contexts; (3) dispositions; (4) tools; and (5) critical orientation. These dimensions represent distinct, but interrelated, capacities required by principals to establish and maintain positive STEM learning cultures within schools. Elaborations have been provided, in the form of capabilities, for each of these dimensions. The model has the potential for shaping principals' STEM leadership development trajectories and structuring targeted professional learning programmes for principals, teachers and other members of the school community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号