首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This study investigated the potential of students' written and oral questions both as an epistemic probe and heuristic for initiating collaborative argumentation in science. Four classes of students, aged 12–14 years from two countries, were asked to discuss which of two graphs best represented the change in temperature as ice was heated to steam. The discussion was initiated by asking questions about the phenomenon. Working in groups (with members who had differing viewpoints) and guided by a set of question prompts, an argument sheet, and an argument diagram, students discussed contrasting arguments. One group of students from each class was audiotaped. The number of questions written, the concepts addressed, and the quality of written arguments were then scored. A positive correlation between these factors was found. Discourse analysis showed that the initial focus on questions prompted students to articulate their puzzlement; make explicit their claims and (mis)conceptions; identify and relate relevant key concepts; construct explanations; and consider alternative propositions when their ideas were challenged. Productive argumentation was characterized by students' questions which focused on key ideas of inquiry, a variety of scientific concepts, and which made explicit reference to the structural components of an argument. These findings suggest that supporting students in productive discourse is aided by scaffolding student questioning, teaching the criteria for a good argument, and providing a structure that helps them to organize and verbalize their arguments. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:883–908, 2010  相似文献   

2.
We investigated how students articulate uncertainty when they are engaged in structured scientific argumentation tasks where they generate, examine, and interpret data to determine the existence of exoplanets. In this study, 302 high school students completed 4 structured scientific arguments that followed a series of computer-model-based curriculum module activities simulating the radial velocity and/or the transit method. Structured scientific argumentation tasks involved claim, explanation, uncertainty rating, and uncertainty rationale. We explored (1) how students are articulating uncertainty within the various elements of the task and (2) the relationship between the way the task is presented and the way students are articulating uncertainty. We found that (1) while the majority of students did not express uncertainty in either explanation or uncertainty rationale, students who did express uncertainty in their explanations did so scientifically without being prompted explicitly, (2) students’ uncertainty ratings and rationales revealed a mix of their personal confidence and uncertainty related to science, and (3) if a task presented noisy data, students were less likely to express uncertainty in their explanations.  相似文献   

3.
As China and the United States become the top two carbon emitters in the world, it is crucial for citizens in both countries to construct a sophisticated understanding of energy consumption issues. This interview study examines how U.S. and Chinese students compare in explaining and arguing about two critical energy consumption issues: burning fossil fuels and using electricity. In particular, we focused on using scientific knowledge to explain and argue about these issues. Based on relevant literature and our previous research, we developed a model to guide separate assessment and evaluation of students’ argumentation and explanation. We conducted clinical interviews with 40 biology majors, including 20 U.S. students and 20 Chinese students. This study generated several important findings. First, Chinese students tended to be less consistent across explanations and argumentation, and their levels of argumentation were lower than their levels of explanation. Second, in comparison to their Chinese counterparts, U.S. students provided more scientific arguments but many fewer scientific explanations. Finally, although all participants were college students and had completed at least one introductory level science course before the interviews, some of their explanations and arguments were based on informal ideas rather than matter and energy. We discuss the possible interpretations of these findings and their implications for teaching and learning of scientific explanation and argumentation in both countries.  相似文献   

4.
5.
We explored the scientific argumentation that occurs among university biology students during an argumentation task implemented in two environments: face-to-face in a classroom and online in an asynchronous discussion. We observed 10 student groups, each composed of three students. Our analysis focused on how students respond to their peers’ unscientific arguments, which we define as assertions, hypotheses, propositions, or explanations that are inaccurate or incomplete from a scientific perspective. Unscientific arguments provide opportunities for productive dissent, scientific argumentation, and conceptual development of scientifically desirable conceptions. We found that students did not respond to the majority of unscientific arguments in both environments. Challenges to unscientific arguments were expressed as a question or through explanation, although the latter was more common online than face-to-face. Students demonstrated significantly more epistemic distancing in the face-to-face environment than the online environment. We discuss the differences in discourse observed in both environments and teaching implications. We also provide direction for future research seeking to address the challenges of engaging students in productive scientific argumentation in both face-to-face and online environments.  相似文献   

6.
7.
A problem that is still unexplored in the field of socioscientific issues (SSI) and that was explored in this study is how different students decide upon a SSI they are discussing, how their justifications change during the instruction and how they use (or not) the evidence from the learning environment to support their justifications. For the purposes of this study, two classes (12–13-year-old students) with diverse characteristics were selected from two different schools in the UK. Class A students, considered high achievers come from a white-British background. Class B students considered average achievers come from an Asian British background. The students engaged in discussions regarding a SSI (Should we kill the grey squirrel to save the red?), supported by an online learning environment. Students’ written arguments, classroom discussions, and classroom observations were collected and analysed. The findings suggest that even though the two classes engaged with the same learning environment, the decisions and justifications provided by the pairs in the two classes were quite distinct. The students used the evidence from the learning environment in ways which supported their decision, and tended to ignore evidence if these contradicted their decision. Furthermore, students’ justifications support the hypothesis that their decision was based on whether they identified with the actors of the issue. Implications for research include exploring how students identify with the actors of a SSI to enable us to support them overcoming their personal narratives and becoming critical evaluators of scientific knowledge.  相似文献   

8.
ABSTRACT

This study investigates the role of automated scoring and feedback in supporting students’ construction of written scientific arguments while learning about factors that affect climate change in the classroom. The automated scoring and feedback technology was integrated into an online module. Students’ written scientific argumentation occurred when they responded to structured argumentation prompts. After submitting the open-ended responses, students received scores generated by a scoring engine and written feedback associated with the scores in real-time. Using the log data that recorded argumentation scores as well as argument submission and revisions activities, we answer three research questions. First, how students behaved after receiving the feedback; second, whether and how students’ revisions improved their argumentation scores; and third, did item difficulties shift with the availability of the automated feedback. Results showed that the majority of students (77%) made revisions after receiving the feedback, and students with higher initial scores were more likely to revise their responses. Students who revised had significantly higher final scores than those who did not, and each revision was associated with an average increase of 0.55 on the final scores. Analysis on item difficulty shifts showed that written scientific argumentation became easier after students used the automated feedback.  相似文献   

9.
This study explores how collaborative inquiry learning can be supported with multiple scaffolding agents in a real-life field trip context. In practice, a mobile peer-to-peer messaging tool provided meta-cognitive and procedural support, while tutors and a nature guide provided more dynamic scaffolding in order to support argumentative discussions between groups of students during the co-creation of knowledge claims. The aim of the analysis was to identify and compare top- and low-performing dyads/triads in order to reveal the differences regarding their co-construction of arguments while creating knowledge claims. Although the results revealed several shortcomings in the types of argumentation, it could be established that differences between the top performers and low performers were statistically significant in terms of social modes of argumentation, the use of warrants in the mobile tool and in overall participation. In general, the use of the mobile tool likely promoted important interaction during inquiry learning, but led to superficial epistemological quality in the knowledge claim messages.  相似文献   

10.
The purpose of this study was to examine how lower track science students would understand shifts in standard classroom discourse patterns. The researcher videotaped his daily efforts to renegotiate the lower track classroom environment to become more representative of a scientific community. This paper is an analysis of the implicit obstacles inherent in shifting class discussions to classroom arguments examining tentative hypotheses. Students have inserted struggles for social status into classroom arguments about scientific ideas making it difficult to separate in a group discussion when the evidence convinced a student or whether the social politics of the class had persuaded her. As a result of changing classroom rules for participation, engagement, and collaborative inquiry, students' abilities to argue scientifically were changed. Despite these shifts students continued to insert their own interpretations of argumentation, social norms, and strategies for active re-negotiation of the teacher's agenda for the construction of scientific classroom discourse.  相似文献   

11.
ABSTRACT

This study investigated two science teachers’ meta-strategic knowledge (MSK) of argumentation teaching by applying the repertory grid technique (RGT). One teacher was a novice, while the other was experienced in teaching argumentation. Using the RGT, we elicited the objectives and strategies of the two teachers regarding their argumentation teaching involving two social scientific issue (SSI) scenarios. The results showed that the experienced teacher had more varied and organised MSK for teaching argumentation than the novice teacher. Meanwhile, the novice teacher indicated a belief that the learning of argumentation should occur in a more student-centred manner, rather than relying on a traditional lecture-based environment. Consequently, she spent a considerable amount of time engaging students with their peers’ ideas through discussion and collaboration. On the other hand, the experienced teacher noticed that most of students had the ability to generate arguments, but that few knew how to argue based on evidence. Therefore, she helped students to collect data from various resources and suggested that they construct their own knowledge framework in order to improve students’ ability to incorporate their understanding of scientific knowledge into scientific argumentation.  相似文献   

12.
In recent years, an emphasis on scientific argumentation in classrooms has brought into focus collaborative consensus-building as an instructional strategy. In these situations, students with differing and competing arguments are asked to work with one another in order to establish a shared perspective. However, the literature suggests that consensus-building can be challenging for students because their interpretations of the argumentative task and context may not enable their productive engagement with counter-arguments and evidence. In this paper, our goal is to explore the ways in which interactions of students support or inhibit their consensus-building. To that end, we examine and describe three cases that represent different ways in which initially dissenting students try to work towards a consensus with their peers. Through these cases, we demonstrate that legitimization of disparate or incorrect ideas can enable students whose arguments rely on incorrect ideas to feel that their ideas were heard and valued by the rest of their group. As such, we suggest that this legitimization is important because it can help students ‘save face’. This enables students to move away from the competitive and persuasive aspects of argumentation towards interactions that align more closely with sensemaking and consensus-building.  相似文献   

13.
Research and practice has placed an increasing emphasis on aligning classroom practices with scientific practices such as scientific argumentation. In this paper, I explore 1 challenge associated with this goal by examining how existing classroom practices influence students' engagement in the practice of scientific argumentation. To do so, I present discourse data from 2 middle school classes engaged in argumentation activities. For each class, I compare existing classroom practices to a discussion designed to facilitate argumentation. My analysis reveals that the existing classroom practices influenced the way in which students responded to the disparate ideas being discussed and that the immediate learning environment influenced the frequency with which students justified their ideas and directly responded to one another. This study suggests that the goal structures that aligned with the existing classroom practices carried over to students' argumentative interactions, influencing how they responded to the disparate ideas. However, the immediate learning environment—including activity structure, software tools, and teaching strategies—seemed to foster student-to-student interactions and justification of ideas.  相似文献   

14.
This paper reports design experiments on two Japanese elementary science lesson units in a sixth‐grade classroom supported by computer support for collaborative learning (CSCL) technology as a collaborative reflection tool. We took different approaches in the experiments depending on their instructional goals. In the unit ‘air and how things burn’, we designed the unit where groups of students engaged in building theories on ‘how a candle stops burning in a closed jar’. In the unit ‘characteristics of various solutions’, groups of students collaboratively constructed a pH scale as knowledge artefact. In both studies, the CSCL technology was implemented mainly for facilitating collaboration between groups. Results showed that: (1) students were more likely to engage in symmetric communication (i.e. between groups as well as within groups) in the second unit, and (2) they were also more idea‐centred and more frequently shared their ideas in the second unit. The results were discussed from the perspectives of the scientific practices students engaged in and task structure.  相似文献   

15.
This study investigated the collaborative decision-making and communicative discourse of groups of learners engaged in a simulated medical emergency in two conditions. In one condition subgroups used a traditional whiteboard (TW group) to document medical arguments on how to solve a medical emergency. In the other condition subgroups used interactive whiteboards (IW group) where they could document their medical arguments by using a structured template for constructing, annotating and sharing arguments. The discourse of each group was coded with respect to decision-making and communicative activities. The research goal was to identify relationships between the decision-making and collaborative discourse under the two conditions. The IW condition differed from the TW condition in that participants engaged in more adaptive decision-making behavior early on in the intervention. This early engagement led to shared understandings and subsequently to more effective patient management. Group differences were also found in the types of collaborative discourse and the IW groups produced more productive argumentation.  相似文献   

16.
Formative assessment, bilingualism, and argumentation when combined can enrich bilingual scientific literacy. However, argumentation receives little attention in the practice of bilingual science education. This article describes the effect of a formative assessment-based pedagogical strategy in promoting university students’ argumentation. It examines the written and oral arguments produced by 54 undergraduates (28 females and 26 males, 16–21 years old) in Colombia during a university bilingual (Spanish-English) science course. The data used in this analysis was derived from students’ written responses, and audio and video recordings. The first goal of this study was to determine how this teaching strategy could help students increase the use of English as a means of communication in argumentation in science. The second goal was to establish the potential of the strategy to engage students in argumentative classroom interactions as an essential part of formative assessment. The findings show that the strategy provided participants with opportunities to write their argumentation in Spanish, in English and in a hybrid version using code-switching. Educational implications for higher education are discussed.  相似文献   

17.
The purpose of this study was to explore the impact of an intervention on pre-service science teachers’ self-efficacy to teach science through argumentation and explore the challenges they experienced while implementing argumentation. Forty pre-service science teachers in their final semester of schooling participated in an intervention that lasted for 11 weeks. Intervention focused on participants’ understanding of argumentation as a scientific practice and as a pedagogical tool. The participants engaged in argument construction, evaluation, and critique, taught three argumentation lessons, engaged in peer observation of teaching, and reflection on their teaching skills. Data were collected through Argumentation Self-Efficacy Scale and an open-ended questionnaire. The results show that the intervention had a significantly positive effect on pre-service teachers’ self-efficacy. Despite this reported self-efficacy, participants experienced significant challenges in guiding their students to construct scientific arguments and assessing the arguments developed by their students. Discussion focuses on implications for professional development of pre-service and in-service science teachers.  相似文献   

18.

Constructing scientific arguments is an important practice for students because it helps them to make sense of data using scientific knowledge and within the conceptual and experimental boundaries of an investigation. In this study, we used a text mining method called Latent Dirichlet Allocation (LDA) to identify underlying patterns in students written scientific arguments about a complex scientific phenomenon called Albedo Effect. We further examined how identified patterns compare to existing frameworks related to explaining evidence to support claims and attributing sources of uncertainty. LDA was applied to electronically stored arguments written by 2472 students and concerning how decreases in sea ice affect global temperatures. The results indicated that each content topic identified in the explanations by the LDA— “data only,” “reasoning only,” “data and reasoning combined,” “wrong reasoning types,” and “restatement of the claim”—could be interpreted using the claim–evidence–reasoning framework. Similarly, each topic identified in the students’ uncertainty attributions— “self-evaluations,” “personal sources related to knowledge and experience,” and “scientific sources related to reasoning and data”—could be interpreted using the taxonomy of uncertainty attribution. These results indicate that LDA can serve as a tool for content analysis that can discover semantic patterns in students’ scientific argumentation in particular science domains and facilitate teachers’ providing help to students.

  相似文献   

19.
Argumentation, and the production of scientific arguments are critical elements of inquiry that are necessary for helping students become scientifically literate through engaging them in constructing and critiquing ideas. This case study employed a mixed methods research design to examine the development in 5th grade students’ practices of oral and written argumentation from one unit to another over 16 weeks utilizing the science writing heuristic approach. Data sources included five rounds of whole-class discussion focused on group presentations of arguments that occurred over eleven class periods; students’ group writings; interviews with six target students and the teacher; and the researcher’s field notes. The results revealed five salient trends in students’ development of oral and written argumentative practices over time: (1) Students came to use more critique components as they participated in more rounds of whole-class discussion focused on group presentations of arguments; (2) by challenging each other’s arguments, students came to focus on the coherence of the argument and the quality of evidence; (3) students came to use evidence to defend, support, and reject arguments; (4) the quality of students’ writing continuously improved over time; and (5) students connected oral argument skills to written argument skills as they had opportunities to revise their writing after debating and developed awareness of the usefulness of critique from peers. Given the development in oral argumentative practices and the quality of written arguments over time, this study indicates that students’ development of oral and written argumentative practices is positively related to each other. This study suggests that argumentative practices should be framed through both a social and epistemic understanding of argument-utilizing talk and writing as vehicles to create norms of these complex practices.  相似文献   

20.
The purpose of this study is to explore how Lakatos’ scientific research programmes might serve as a theoretical framework for representing and evaluating informal argumentation about socio‐scientific issues. Seventy undergraduate science and non‐science majors were asked to make written arguments about four socio‐scientific issues. Our analysis showed that the science majors’ informal arguments were significantly better than the non‐science majors’ arguments. In terms of the resources for supporting reasons, we find that personal experience and scientific belief are the two categories that are generated most often in both groups of the participants. Besides, science majors made significantly greater use of analogies, while non‐science majors made significantly greater use of authority. In addition, both science majors and non‐science majors had a harder time changing their arguments after participating in a group discussion. In the study of argumentation in science, scholars have often used Toulmin’s framework of data, warrant, backing, qualifiers, claims, and rebuttal. Our work demonstrates that Lakatos’ work is also a viable perspective, especially when warrant and backing are difficult to discern, and when students’ arguments are resistant to change. Our use of Lakatos’ framework highlights how the ‘hard core’ of students’ arguments about socio‐scientific issues does, indeed, seem to be protected by a ‘protective belt’ and, thus, is difficult to alter. From these insights, we make specific implications for further research and teaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号