首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
The classical and numerical taxonomy, palynology and the geographical dis- tribution of the Genus Schizopepon are dealt with in the present paper.  Having comme- nted on various opinions regarding the systematic position of the genus, the present au- thors consider that C. Jeffrey’s treatment of Schizopepon as a new and monogeneric tri- be, Schizopeponeae, should be supported.      The gross morphological characters in the genus are assessed from the taxonomic point of view.  Some characters, such as stamens with an elongated connective or not, different insertions of ovules and various forms of ovaries and fruits, may be used for distinguishing subgenera.      The pollen grains of all the species were observed under light microscope (LM) and scanning electron microscope (SEM).  The results show that a strong differentiation has taken place in the pollen of the genus, and in consequence it may be regarded as an important basis for dividing subgenera and species. Especially it should be pointed out that degrees of development of colpi and positions of ora are positively correlated with the external characters used for distinguishing subgenera.      According to the morphological and palynological characters, the genus Schizopepon may be divided into three subgenera and eight species: 1. Subgenus Schizopepon: 5 spe- cies, S. bryoniaefolius Maxim., S. monoicus A. M. Lu et Z. Y. Zhang, S. dioicus Cogn., S. longipes Gagnep. and S. macranthus Hand.-Mazz.; 2. Subgenus Rhynchocarpos A. M. Lu et Z. Y. Zhang: 1 species, S. bomiensis A. M. Lu et Z. Y. Zhang; 3. Subgenus Neoschi- zopepon A. M. Lu et Z. Y. Zhang: 2 species, S. bicirrhosus (C. B. Clarke) C. Jeffrey and S. xizangensis A. M. Lu et Z. Y. Zhang.      The 8 OTU’s including all the species of this genus and 31 characters, of which 16 are morphological characters and 15 palynological characters, were used in the numerical taxonomic treatment.  After standardization of characters, the correlation and distance matrices were computed.  The correlation matrices are made to test the various clustering methods.  At last, the UPGMA clustering method was selected and its result is shown in the form of phenogram.  The result of numerical analysis is similar to that of the classical classification.      Schizopepon Maxim. is a genus of East Asia-Himalayan distribution. China has all 8 species and 2 varieties, of which 6 species are endemic. Based on the statistics of spedies number, the distribution centre of the genus is considered to be in the Hengduan Mountains (Yangtze-Mekong-Salwin water divides) and the adjacent areas of the southwest China.  相似文献   

2.
 As a genus Acronema was first proposed by Falconer, but it was only a nomen nudum.  The genus was effectively established by Edgeworth (1851) on the basis of a himalayan species, Acronema tenerum (Wall) Edgew. (= Sison tenerum Wall. 1828). Bentham & Hooker had placed the genus within Pimpinella in 1867.  C. B. Clarke followed the same treatment in the Flora of British India in 1879. The much detailed systematic work of the genus was done by H. Wolff in Engl.  Pflanzenreich (1927).       The chief distinguishing character of the genus lies in the acuminulate of filamen- tous apices of the petals.      At present the genus contains about 23 species chiefly in the himalayan regions and South-west China, many being found in Sichuan, Yunnan and eastern Xizang.       They are usually growing under the shade of forest, roadside and riverside at the altitude 2100—4800 meters.       In this paper 18 species and 2 varieties are presented, of which 5 species, 2 varieties and 1 combinations are considered as new and three arc first recorded fromChina.  相似文献   

3.
The morphological characters in the genus Orobanche were evaluated from the taxonomic point of view.  The author finds that the plants of this genus are relatively similar to each other in respect to characters of vegetative organs, fruits and seeds.  But the differences in the floral structures can be served as a basis for delimitating infrageneric taxa.   The seed coat of 18 species and pollen grains of  6 species were also examined under scanning electron microscope (SEM). They seem to have little significance for distinguishing species.       The result supports G. Beck’s (1930) division of the genus Orobanche into 4 sections, of which 2 occur in China, based on the characters of the inflorescence, bracteoles and calyx. The author considers that some characters, such as anther hairy or not, upper lip of corolla entire or not, lower lip longer or shorter than the upper one, the state of corolla-tube inflec-  tion and the hair type of filaments and plants, are important in distinguishing Chinese species.  A key to the species of Orobanche in China is given.       This genus consists of about 100 species, and is mostly confined to Eurasia, with over 60  species found in Caucasus and Middle Asia of USSR, where may be the mordern  distribu-  tional  centre.        Orobanche L. in China is represented by 23 species, 3 varieties and l forma. As shown in  Table 1, most species (12 species) are found in Xinjiang, which clearly shows a close floristic  relationship between this region and Middle Asia of USSR.  6 species are endemic to China,  of which 4 are confined to the Hengduan Mountains  (Yangtze-Mekong-Salwin divide).        The relationships between this genus and related ones of Orobanchaceae are also discussed.  The author holds the following opinions: the genus Phelypaea Desf. should be considered as a   member of Orobanche L. Sect. Gymnocaulis G. Beck,  the monotypic genus,   Necranthus A.   Gilli endemic to Turkey, is allied with Orobanche L. Sect.  Orobanche, the monotypic genus,   Platypholis Maxim, endemic to Bonin Is. of Japan, is far from Orobanche L. in relation and   should be regarded as a separate genus.        The 11 OTU’s, including all the sections of Orobanche L. and 7 genera of Orobanchaceae,   and 15 morphological characters were used in the  numerical  taxonomic treatment  to  test  the   above-mentioned  suggestions.   After standardization of characters, the correlation matrices were   computerized.  The correlation matrices were made to test the various clustering methods.   At    last the UPGMA clustering method was chosen and its result is shown in a phenogram.  The   result of numerical analysis is basically in accordance with the suggestions.  相似文献   

4.
The first classification for the genus Ormosia was proposed by Bentham. It was followed by Taubert (1892) in Engler and Prantl’s Nat. Pflanzenf., who divided the genus into 2 sections.  On the basis of the pod structure and seed characters Prain (1900) arran- ged the genus in 2 sections with 4 subsections.  In the monograph on the genus Merrill and L. Chen ( 1943 ) limited their taxonomic study to Chinese and Indo-Chinese species, and recognized 34 species and 15 series.  Recently Yakovlev (1971-1976) has treated the ge- nus in 6 separate genera.      In the present paper the author recognizes 35 species, of which 7 species and 2 varie- ties are new.  The Chinese species of the genus are grouped into 3 sections and 6 series inmy classification.  相似文献   

5.
6.
 Xizang (Tibet) is rich in Leguminosae flora, comprising 41 genera and 254 species so far known, exclusive of the commonly cultivated taxa (including 11 genera and 16 species). There are 4 endemic genera (with 8 species), 10 temperate genera (with 175 species) and 19 tropical genera (with 46 species) as well as the representatives of those genera whose distribution centers are in East Asia-North  America, Mediterranean and Central Asia.       1.  There are altogether 4 endemic genera of Leguminosae in this region. Accord- ing to their morphological characters, systematic position and geographical distribution, it would appear that Salweenia and Piptanthus are Tertiary paleo-endemics, while Straceya and Cochlianths are neo-endemics. Salweenia and Piptanthus may be some of more primitive members in the subfamily Papilionasae and their allies are largely distributed in the southern Hemisphere.  The other two genera might have been derived from the northern temperate genus Hedysarum and the East Asian-North American genus Apios respectively, because of their morphological resemblance. They probably came into existanc during the uplifting of the Himalayas.       2. An analysis of temperate genera       There are twelve temperate genera of Leguminosae in the region, of which the more important elements in composition of flora, is Astragalus, Oxytropis and Cara- gana.       Astragalus  is a  cosmopolitan  genus comprising 2000 species, with its center distribution in Central Asia. 250 species, are from China so far known, in alpine zone of Southwest and Northwest, with 70 species extending farther to the Himalayas and Xizang Plateau.       Among them, there are 7 species (10%) common to Central Asia, 12 species (15.7%) to Southwest China and 40 species (60%) are endemic, it indicates that the differentia- tion of the species of the genus in the region is very active, especially in the subgenus Pogonophace with beards in stigma. 27 species amounting to 78.5% of the total species of the subgenus, are distributed in this region.  The species in the region mainly occur in alpine zone between altitude of 3500—300 m. above sea-level. They have developed into a member of representative of arid and cold alpine regions.      The endemic species of Astragalus in Xizang might be formed by specialization of the alien and native elements. It will be proved by a series of horizontal and vertical vicarism of endemic species.  For example, Astragalus bomiensis and A. englerianus are horizontal and vertical vicarism species, the former being distributed in southeast part of Xizang and the latter in Yunnan; also A. arnoldii and A. chomutovii, the former being an endemic on Xizang Plateau and latter in Central Asia.      The genus Oxytropis comprises 300 species which are mainly distributed in the north temperate zone. About 100 species are from China so far known, with 40 species extending to Himalayas and Xizang Plateau.  The distribution, formation and differ- entiation of the genus in this region are resembled to Astragalus.  These two genera are usually growing together, composing the main accompanying elements of alpine mea- dow and steppe.      Caragana is an endemic genus in Eurasian temperate zone and one of constructive elements of alpine bush-wood. About 100 species are from China, with 16 species in Xi- zang. According to the elements of composition, 4 species are common to Inner Mon- golia and Kausu, 4 species to Southwest of China, the others are endemic. This not only indicates that the species of Caragana in Xizang is closely related to those species of above mentioned regions, but the differentiation of the genus in the region is obviously effected by the uplifting of Himalayas, thus leading to the formations of endemic species reaching up to 50%.      3. An Analysis of Tropical Genera      There are 19 tropical genera in the region. They concentrate in southeast of Xizang and southern flank of the Himalayas. All of them but Indigofera and Desmodium are represented by a few species, especially the endemic species. Thus, it can be seen that they are less differentiated than the temperate genera.      However, the genus Desmodium which extends from tropical southeast and northeast Asia to Mexio is more active in differentiation than the other genera. According to Oha- Shi,s system about the genus in 1973, the species of Desmodium distributed in Sino-Hima- laya region mostly belong to the subgenus Dollinera and subgenus Podocarpium.  The subgenus Dollinera concentrates in both Sino-Himalaya region and Indo-China with 14 species, of which 7 species are endemic in Sino-Himalaya.  They are closely related to species of Indo-China, southern Yunnan and Assam and shows tha tthey have close con- nections in origin and that the former might be derived from the latter.      Another subgenus extending from subtropical to temperate zone is Podocarpium. Five out of the total eight species belonging to the subgenus are distributed in Sino- Himalaya and three of them are endemic.      An investigation on interspecific evolutionary relationship and geographic distribu- tion of the subgenus shows that the primary center of differentiation of Podocarpium is in the Sino-Himalaya region.      Finally, our survey shows that owing to the uplifting of the Himalayas which has brought about complicated geographic and climatic situations, the favorable conditions have been provided not only for the formation of the species but also for the genus in cer-tain degree.  相似文献   

7.
 This paper is a preliminary study on the Sabiaceae in aspects of its morphology, taxonomy and geography.  We propose that the Sabioideae and Meliosmoideae as two new subfamilies of Sabiaceae according to the external morphology, flower structure and geographical distribution of these two genera respectively.       This paper follows the taxonomic concepts of Luetha Chen on Sabia and C. F. van Beusekom on Meliosma.  We agree with them for their classification of these two genera above the specific rank.  As to the revision work of Sabia by van de Water and C. F. van Beusekom’s work on Meliosma we disagree  for their unduly broad specific concepts.  We rather treat the species of these two genera according to their habitats in regions on a relatively narrower sense.  The genus Sabia of China are classified into 2 tribes, with 16 species, 5 subspecies and 2 varieties in which 4 sub- species and l variety are as new combinations, the genus of Meliosma in China are classified into 2 subgenera with 29 species, and 7 varieties of which 4 varieties are new combinations.       After examining the affinity of the species of Sabia and Meliosma in China and its neighboring nations such as Burma, Japan and Bhutan, we found that their migra- tion initiated from China, as the primitive species of these two genera occured in northeast and central part of Yunnan, sou theast of Sichuan, north of Guizhou and west of Hubei, the region may probably be the main origin of these two genera.      As shown in tables 1 & 2, the localities where the species of these two genera den- sely populate they are from Yunnan, Guangxi, and Guangdong coinciding with the concepts of C. F. van Beusekom and van de Water about the distribution of exotic species of these two genera, it may reasonable be pointed out that the center of distri- bution of these two genera is Yunnan, Guangxi, Guangdong and nieghboring nations, upper Burma and northern Vietnam.  Futhermore, it may be seen that starting from this center the number of species become less and less as they proceed far and far awaybut become more advance in evolution.  相似文献   

8.
 Parmelia is a genus of economical importance.   According  what  was  recorded, Meyen & Flotow were the first foreigners to study Chinese lichens in 1843.  Up to the present time 74 species, 24 varieties and 11 forms have been described from China.      The majority of specimens reported in this paper were collected by many Chinese botanists and collectors from 21 provinces from 1928--1962, while a few of them were collected by Licent from 1916 to 1917 and by Poliansky in 1957.      The system of classification adopted here is that held by A. Zahlbruckner in 1926. But in section Hypotrachyna, the two subsections-Myelochroa and Myeloleuca proposed by Asahina are adopted and Parmelia xanthocarpa which has not been properly placed before, is here referred to the subsection Myelochroa.      In the subgenus Hypogymnia the writer discovers that the length of spores of two species are longer than 10μ, especially  Parmelia macrospora reaches  17.5μ long.  So far as the writer knows, the upper limitation of the spore length  recognized  by  many lichenologists has been 10μ in this subgenus.  The spore measurement of this subgenus needs, therefore, to be revised in future.       In this paper 78 species, 14 varieties and 6 forms are presented.  Among them, 5 species, 5 varieties and 1 forms are considered as new and two new combinations have been made.  Out of all these, 31 species, 6 varieties and 2 forms are first recorded from China.  All the materials cited are deposited in the Mycological Herbarium of Instituteof Microbiology, Academia Sinica, Peking.  相似文献   

9.
木兰科分类系统的初步研究   总被引:10,自引:0,他引:10  
A new system of classification of Magnoliaceae proposed.  This paper deals mainly with taxonomy and phytogeography of the family Magnoliaceae on the basis of external morphology, wood anatomy and palynology.  Different  authors have had different ideas about the delimitation of genera of this family, their controversy being carried on through more than one hundred years (Table I).  Since I have been engaged in the work of the Flora Reipublicae Popularis Sinicae, I have accumulated a considerable amount of information and material and have investigated the living plants at their natural localities, which enable me to find out the evolutionary tendencies and primitive morphological characters of various genera of the family.  According to the evolutionary tendencies of the characters and the geographical distribution of this family I propose a new system by dividing it into two subfamilies, Magnolioideae and Liriodendroideae Law (1979), two tribes, Magnolieae and Michelieae Law, four subtribes, Manglietiinae Law, Magnoliinae, Elmerrilliinae Law and Micheliinae, and fifteen genera (Fig. 1 ), a system which is different from those by J. D. Dandy (1964-1974) and the other authors.      The recent distribution and possible survival centre of Magnoliaceae. The members of Magnoliaceae are distributed chiefly in temperate and tropical zones of the Northern Hemisphere, ——Southeast Asia and southeast North America, but a few genera and species also occur in the Malay Archipelago and Brazil of the Southern Hemisphere. Forty species of 4 genera occur in America, among which one genus (Dugendiodendron) is endemic to the continent, while about 200 species of 14 genera occur in Southeast Asia, of which 12 genera are endemic.  In China there are about 110 species of 11 genera which mostly occur in Guangxi, Guangdong and Yunnan; 58 species and more than 9 genera occur in the mountainous districts of Yunnan.   Moreover,  one  genus (Manglietiastrum Law, 1979) and 19 species are endemic to this region.  The family in discussion is much limited to or interruptedly distributed in the mountainous regions of Guangxi, Guangdong and Yunnan.  The regions are found to have a great abundance of species, and the members of the relatively primitive taxa are also much more there than in the other regions of the world.      The major genera, Manglietia, Magnolia and Michelia, possess 160 out of a total of 240 species in the whole family.  Talauma has 40 species, while the other eleven genera each contain only 2 to 7 species, even with one monotypic genus.   These three major genera are sufficient for indicating the evolutionary tendency and geographical distribution of Magnoliaceae.  It is worthwhile discussing their morphological  characters  and distributional patterns as follows:      The members of Manglietia are all evergreen trees, with flowers terminal, anthers dehiscing introrsely, filaments very short and flat, ovules 4 or more per carpel.  This is considered as the most primitive genus in subtribe Manglietiinae.  Eighteen out of a total  of 35 species of the genus are distributed in the western, southwest to southeast Yunnan. Very primitive species, such as Manglietia hookeri, M. insignis  and M. mega- phylla, M. grandis, also occur in this region. They are distributed from Yunnan eastwards to Zhejiang and Fujian through central China, south China, with only one species (Manglietia microtricha) of the genus westwards to Xizang.  There are several species distributing southwards from northeast India to the Malay Archipelago (Fig. 7).      The members of Magnolia are evergreen and deciduous trees or shrubs, with flowers terminal, anthers dehiscing introrsely or laterally, ovules 2 per carpel, stipule adnate to the petiole.  The genus Magnolia is the most primitive in the subtribe Magnoliinae and is the largest genus of the family Magnoliaceae. Its deciduous species are distributed from Yunnan north-eastwards to Korea and Japan (Kurile N. 46’) through Central China, North China and westwards to Burma, the eastern Himalayas  and northeast India.  The evergreen species are distributed from northeast  Yunnan  (China)  to  the Malay Archipelago.  In China there are 23 species, of which 15 seem to be very primi- tive, e.g. Magnolia henryi, M. delavayi, M. officinalis and M. rostrata, which occur in Guangxi, Guangdong and Yunnan.      The members of Michelia are evergreen trees or shrubs, with flowers axillary, an- thers dehiscing laterally or sublaterally, gynoecium stipitate, carpels numerous or few. Michelia is considered to be the most primitive in the subtribe Micheliinae, and is to the second largest genus of the family.  About 23 out of a total of 50 species of this genus are very primitive, e.g. Michelia sphaerantha, M. lacei, M. champaca,  and  M. flavidiflora, which occur in Guangdong, Guangxi and Yunnan (the distributional center of the family under discussion)  and extend eastwards to Taiwan  of  China, southern Japan through central China, southwards to the Malay Archipelago through Indo-China. westwards to Xizang of China, and south-westwards to India and Sri Lanka (Fig. 7).      The members of Magnoliaceae are concentrated in Guangxi, Guangdong and Yunnan and radiate from there.  The farther away from the centre, the less members we are able to find, but the more advanced they are in morphology.  In this old geographical centre there are more primitive species, more  endemics  and  more monotypic genera. Thus it is reasonable to assume that the region of Guangxi, Guangdong and Yunnan, China, is not only the centre of recent distribution, but also the chief survival centreof Magnoliaceae in the world.  相似文献   

10.
 When F. A. McClure published the new genus Sinocalamus McClure in 1940, the 4 species he listed are S. latiflorus (Munro) McClure, S. beecheyanus (Munro) Mc- Clure, S. oldhami (Munro) McClure and S. affinis (Rendle) McClure.  After careful examination, the authors of this paper considered that the type species of McClure’s genus S. latiflorus (Munro) McClure should belong to the genus Dendrocalamus Nees, and the other species are of Bambusa Schreber.  Owing to Sinocalamus McClure is not a taxon representative of its type species, but a mixture, it must be rejected as a synonym of Dendrocalamus Nees.  In consequence then, the authors make adjustment to the taxonomic category of the 14 species and 1 variety which have ever been in Sinocalamus McClure.      As for the characters of Lingnania McClure, except that some differences exist in the vegetative parts, the structure of the spikelets is in the main the same as that of Bambusa Schreber.  Consequently, with regard to the systematic relationship, the authors consider it may be more resonable that the rank of Lingnania McClure should be alter- ed to Bambusa Schreber subg.  Lingnania (MeClure) Chia  et H. L. Fung; all the species of Lingnania McClure, except that L. tsiangii McClure should be transferred to Dendrocalamus Nees, should be assignable to Bambusa Schreber subg.  Lingnania (McClure) Chia et H. L. Fung.  相似文献   

11.
中国绞股蓝属(葫芦科)的研究   总被引:2,自引:0,他引:2  
 The genus Gynostemma B1. consists of 13 species and 2 varieties in the whole world, among which 11 species and 2 varieties occur in China. They are distributed in S. Shaanxi and the southern part of the Yangtze River (including Taiwan province) in China and also in Korea, Japan, Sri Lanka, India and Malesia. Based on the characters and dehiscence of fruit, the genus Gynostemma B1. may be divided into two subgenera, i.e. Subgen. I. Gynostemma and Subgen. II. Trirostllum (Z. P. Wang et Q. Z. Xie) C. Y. Wu ct S. K. Chen, comb. nov.        1.  Subgenus Gynostemma. The fruits are baccate, globose, 3-umbonate and incorni culate on the apical side, indehiscent when mature. The style apex in female flower is bifid.       Type of subgenus: Gynostemma pentaphyllum (Thunb.) Mak.       This subgenus contains 8 species and 2 varieties in the world, among which 6 speci- es and 2 varieties occur in China, i.e.1.G. simplicifolium B1. (Yunnan, Hainan of Guang- dong); 2. G. laxum (Wall.) Cogn. (S. Yunnan, Hainan of Guangdong and Guangxi); 3. G. burmanicum King ex Chakr. (Yunnan), 3a. G. burmanicum var. molle C. Y. Wu (Yun- nan); 4. G. pentaphyllum (Thunb.) Mak. (S. Shaanxi and the soutern area of the Yangtze River of China), 4a. G. pentaphyllum (Thunb.) Mak. var. dasycarpum C. V. Wu (Yun- nan); 5. G. pubescens (Gagnep.) C. Y. Wu, st. nov. (Yunnan); 6. G. longipes C. Y. Wu, sp. nov. (endemic to China: Yunnan, Sichuan, Guizhou, Shaanxi and Guangxi).       2.  Subgenus Trirostellum (Z. P. Wang et Q. Z. Xie) C. Y. Wu et S. K. Chen, comb. nov.——Trirostellum Z. P. Wang et Q. Z. Xie in Acta Phytotaxonomia Sinica 19 (4): 483. 1981, syn. nov. The fruit are capsules, subcampanulate, 3-corniculate on the apical side, dehiscent when mature. The style apex in female flower is luniform and irregularly denticulate at margin, rarely bifid.       Type of subgenus: Gynostemma cardiospermum Cogn. ex Oliv.      This subgenus comprises 5 species, which are all endemic to China.  1. G. yixingense (Z. P. Wang et Q. Z. Xie) C. Y. Wu et S. K. Chen (Jiangsu and Zhejiang); 2. G. cardio spermum Cogn. ex Oliv. (Hubei, Shaanxi and Sichuan); 3. G. microspermum C. Y. Wu et S. K. Chen (S. Yunnan); 4. G. aggregatum C. Y. Wu et S. K. Chen (NW. Yunnan); 5. G.laxiflorum C. Y. Wu et S. K. Chen (Anhui).  相似文献   

12.
中国毛茛科植物小志(十五)   总被引:1,自引:0,他引:1  
 在本文中澄清了一些错误鉴定;一些学名证实不能成立,成为异名;对偏翅唐松草的种下分类 群做出修订,并给出新的区别特征;做出锐棱铁线莲系的分种检索表;对渐尖铁线莲群各种的亲缘关 系进行了初步讨论;描述了1新系,3新种,3新变种,2新变型;做出1新组合,4新等级,并拟出1新名;报道了拳距瓜叶乌头、星果草和直梗高山唐松草的国外分布。  相似文献   

13.
藁本属Ligusticum L.属伞形科Umbelliferae芹亚科Apioideae Drude阿米芹族Ammineae Koch。它在阿米芹族中,是一个较进化的类群,是介于阿米芹族与前胡族Peucedaneae DC.之间的一个过渡类型。藁本属全世界60余种。我国现知有34种,占该属种数的二分之一,其中28种及2个栽培变种为我国所特有。本文比较分析藁本属的形态学性状和孢粉学性状,以小总苞片及其相关特征作为该属次级划分的主要依据,将藁本属分为两个类群,并对该属的种类作了增补,对一些种的名称、分布作了补充修订。文中还记载了4个新种。喜马拉雅藁本L.elatum(Edgew.)C.B.Clarke和开展藁本L. thomsonii C. B. Clarke var.evolutior C. B.Clarke,系我国首次记录。  相似文献   

14.
报道了在广西发现的苦苣苔科半蒴苣苔属Hemiboea一新种,即红苞半蒴苣苔H. rubribracteata Z. Y. Li & Yan Liu。该新种叶形与贵州半蒴苣苔H. cavaleriei Lévl.相近,不同在于茎较粗且坚硬,总苞红色,萼片较长,花冠外面白色,无毛,下唇3裂至中部。  相似文献   

15.
 One new genus, one new species and one new subspecies of Labiatae from Anhui and Zhejiang province of China are described and one new combina- tion is made in this paper. They are Pogonanthera H. W. Li et X. H. Guo, P. caulopteris H. W. Li et X. H. Guo, P. intermedia (C. Y. Wu et H. W. Li) H. W. Li et X. H. Guo and Paraphlomis foliata (Dunn) C. Y. Wu et H. W. Lissp. montigena X. H. Guo et S. B. Zhou.  相似文献   

16.
本文对蓝钟花属Cyananthus及整个狭义的桔梗科Campanulaceae(s.str.)的花粉、   染色体和形态性状作了深入的系统研究,表明蓝钟花属是该科的最原始类群,它的亲缘属有党   参属Codonopsis和细钟花属Leptocodon。  对蓝钟花属中各个种及它的亲缘属的地理分布分   析,揭示了该属是典型的中国-喜马拉雅区系的成分,横断山地区是该属的频度和多样性中心;   认为中国西南部及其邻近地区至少是桔梗科原始属的保留中心,甚至可能是该科的起源中心。   作者最后对蓝钟花属各个种的性状作了生物统计分析,在此基础上对全属进行了全面的分类   修订,把原有的26个种9个变种归并为19种(包括2亚种);对该属的次级分类也作了修订。   首次报道了该属的染色体数目和细钟花属的花粉形态。  相似文献   

17.
研究了国产毛茛科银莲花族Trib.Anemoneae 17种植物的染色体数目和核型。10种银莲花属   Anemone L.植物中,1种(西南银莲花A.davidii)为x=8的四倍体(2n=4x=32),5种(匍枝银莲花A.   stolonifera、草玉梅 A.rivularis、卵叶银莲花A .begoniifolia、水棉花A.hupehensis f. alba、大火草A.tomen-   tosa)为x=8的二倍体(2n=2x=16),4种(鹅掌草A.flaccida、湿地银莲花A.rupestris、蓝匙叶银莲花   A.trullifolia var.colestina、拟条叶银莲花A.trullifolia var.holophylla、展毛银莲花A.demissa)为x=7的   二倍体(2n=2x=14)。罂粟莲花Anemoclema glaucifolium 为x=8的二倍体。6种铁线莲属Clematis L.植   物(滇川铁线莲C.kockiana、长花铁线莲C.rehderiana、毛茛铁线莲C.ranunculoides、扬子铁线莲C.   puberula var.ganpiniana、短尾铁线莲C.brevicaudata、金毛铁线莲A.chrysocoma)均为x=8的二倍体。银   莲花属中x=7的种类的核型彼此十分相似,均由6对大型具中部着丝点的染色体和1对具端部着丝点   的染色体组成;x=8的二倍体种类的核型与罂粟莲花属和铁线莲属植物的核型十分相似,均由5对大型  具中部着丝点和3对具端部或近端部着丝点的染色体组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号