首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An adaptive sliding mode trajectory tracking controller is developed for fully-actuated robotic airships with parametric uncertainties and unknown wind disturbances. Based on the trajectory tracking model of robotic airships, an adaptive sliding mode control strategy is proposed to ensure the asymptotic convergence of trajectory tracking errors and adaptive estimations. The crucial thinking involves an adaptive scheme for the controller gains to avoid the off-line tuning. Specially, the uncertain physical parameters and unknown wind disturbances are rejected by variable structure control, and boundary layer technique is employed to avoid the undesired control chattering phenomenon. Computer experiments are performed to demonstrate the performance and advantage of the proposed control method.  相似文献   

2.
In this paper, a leader-follower formation control scheme of multiple underactuated surface vessels (USVs) is proposed for trajectory tracking, which not only solves the line of sight (LOS) and angle tracking errors within the prescribed performance, but also avoids collisions and maintains the communication connection distance. To achieve the prescribed performance and converge the tracking errors in finite time, a tan-type barrier Lyapunov function (TBLF) is introduced into the designed control strategy. In the process of formation control design, the measured values of the LOS range and angle are available, and the velocity of the leader is estimated using a high-gain observer. Next, a novel self-structuring neural network (SNN) is proposed to estimate the uncertain dynamics induced by the model uncertainties and environmental disturbances, and the computation amount is reduced by optimizing the number of neurons. Combining coordinate transformation and dynamic surface control (DSC), an adaptive NN controller with prescribed performance is proposed. The Lyapunov analysis shows that, although uncertain dynamics exist, the tracking errors can converge to a small region in finite time while achieving the prescribed performance, avoiding collisions, and maintaining the communication distance. In the closed-loop system, all signals are practical finite-time stable (PFS). Finally, the effectiveness of the proposed scheme is illustrated through a numerical simulation.  相似文献   

3.
This paper is concerned with the image-based visual servoing (IBVS) control for uncalibrated camera-robot system with unknown dead-zone constraint, where the uncertain kinematics and dynamics are also considered. The control implementation is achieved by constructing a smooth inverse model for dead-zone-input to eliminate the nonlinear effect resulting from the actuator constraint. A novel adaptive algorithm, which does not require a priori knowledge of the parameter intervals of dead-zone model, is proposed to update the parameter values online, and the dead-zone slopes are not required the same. Furthermore, to accommodate the uncertainties of uncalibrated camera-robot system, adaptation laws are developed to estimate the uncertain parameters, simultaneously avoiding singularity of the image Jacobian matrix. With the full consideration of unknown dead-zone constraint and system uncertainties, an adaptive robust visual tracking control scheme together with dead-zone compensation is subsequently established such that the image tracking error converges to the origin. Based on a 3-DOF manipulator, simulations are conducted to verify the tracking performance of the proposed controller.  相似文献   

4.
This paper presents a novel combined State Dependent Riccati Equation (SDRE) / Function Approximation Technique (FAT)-based control design for nonlinear uncertain systems. The SDRE is employed to construct an optimal controller and the function approximation technique is utilized to estimate time-varying disturbances and uncertainties. Moreover, a robust term in the proposed control law compensates for the truncation error. The closed-loop stability and boundedness of the tracking error and FAT weights approximation error are proved in the sense of Lyapunov, with consideration of truncation error. Due to the great importance of the adequate performance of transient response from practical point of view, performance evaluation has been accomplished. The proposed scheme is computationally simple due to utilizing the FAT to represent uncertainties and disturbances as a function of time. Compared with the SDRE based SMC, the proposed controller is superior in terms of capability to track a fast and highly complicated trajectory and no need to determine time-varying disturbances and uncertainties bounds. The case study is a Selective Compliant Articulated Robot for Assembly (SCARA) flexible joint manipulator as a representative of highly nonlinear, coupled, large robotic systems. Simulation results easily verify the effectiveness and superiority of the proposed controller.  相似文献   

5.
This article develops an asymptotic tracking control strategy for uncertain nonlinear systems subject to additive disturbances and parametric uncertainties. To fulfill this work, an adaptive-gain disturbance observer (AGDO) is first designed to estimate additive disturbances and compensate them in a feedforward way, which eliminates the impact of additive disturbances on tracking performance. Meanwhile, an updated observer gain law driven by observer estimation errors is adopted in AGDO, which reduces the conservatism of observer gain selection and is beneficial to practical implementation. Also, the parametric uncertainties existing in systems are addressed via an integrated parametric adaptive law, which further decreases the learning burden of AGDO. Based on the parametric adaption technique and the proposed AGDO approach, a composite controller is employed. The stability analysis uncovers the system asymptotic tracking performance can be attained even when facing time-variant additive disturbances and parametric uncertainties. In the end, comparative experimental results of an actual mechatronic system driven by a dc motor uncover the validity of the developed approach.  相似文献   

6.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

7.
In this paper, an asymptotic adaptive dynamic surface tracking control strategy is investigated for uncertain full-state constrained nonlinear systems subject to parametric uncertainties and external disturbances. A novel disturbance estimator (DE) is firstly used to compensate for external disturbances. The parametric uncertainties are accordingly handled via a synthesized adaptive law. Then, by using the barrier Lyapunov function (BLF) and dynamic surface control (DSC), an appropriate backstepping design framework employing a novel adaptive-gain nonlinear filter is given, which avoids the “explosion of complexity” and relieves the conservatism of filter gain selection. The theoretical analysis reveals the asymptotic tracking performance is assured with the proposed controller. In the end, some simulation cases demonstrate the validity of the proposed controller.  相似文献   

8.
This paper deals with the fault tolerant control (FTC) design for a Vertical Takeoff and Landing (VTOL) aircraft subject to external disturbances and actuator faults. The aim is to synthesize a fault tolerant controller ensuring trajectory tracking for the nonlinear uncertain system represented by a Takagi–Sugeno (T–S) model. In order to design the FTC law, a proportional integral observer (PIO) is adopted which estimate both of the faults and the faulty system states. Based on the Lyapunov theory and ?2 optimization, the trajectory tracking performance and the stability of the closed loop system are analyzed. Sufficient conditions are obtained in terms of linear matrix inequalities (LMI). Simulation results show that the proposed controller is robust with respect to uncertainties on the mechanical parameters that characterize the model and secures global convergence.  相似文献   

9.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

10.
This paper studies the problem of finite-time formation tracking control for networked nonaffine nonlinear systems with unmeasured dynamics and unknown uncertainties/disturbances under directed topology. A unified distributed control framework is proposed by integrating adaptive backstepping control, dynamic gain control and dynamic surface control based on finite-time theory and consensus theory. Auxiliary dynamics are designed to construct control gains with non-Lipschitz dynamics so as to guarantee finite-time convergence of formation errors. Adaptive control is used to compensate for uncertain control efforts of the transformed systems derived from original nonaffine systems. It is shown that formation tracking is achieved during a finite-time period via the proposed controller, where fractional power terms are only associated with auxiliary dynamics instead of interacted information among the networked nonlinear systems in comparison with most existing finite-time cooperative controllers. Moreover, the continuity of the proposed controller is guaranteed by setting the exponents of fractional powers to an appropriate interval. It is also shown that the improved dynamic surface control method could guarantee finite-time convergence of formation errors, which could not be accomplished by conventional dynamic surface control. Finally, simulation results show the effectiveness of the proposed control scheme.  相似文献   

11.
An adaptive backstepping control scheme is proposed for task-space trajectory tracking of robot manipulators in the presence of uncertain parameters and external disturbances. In the case of external disturbance-free, the developed controller guarantees that the desired trajectory is globally asymptotically followed. Moreover, taking disturbances into consideration, the controller is synthesized by using adaptive technique to estimate the system uncertainties. It is shown that L2 gain of the closed-loop system is allowed to be chosen arbitrarily small so as to achieve any level of L2 disturbance attenuation. The associated stability proof is constructive and accomplished by the development of a Lyapunov function candidate. Numerical simulation results are included to verify the control performance of the control approach derived.  相似文献   

12.
In the present paper, the problem of designing a global sliding mode control scheme based on fractional operators for tracking a quadrotor trajectory is investigated. The model of the quadrotor system is given with disturbances and uncertainties. To converge in short finite time of the sliding manifold, a classical quadratic Lyapunov function was used and also a global stabilization of the quadrotor system is ensured. The proposed controller can be ensured the robustness against external disturbances and model uncertainties. Some scenarios are illustrated in this paper. Finally, a comparative study to three other controllers is provided to show the validity and feasibility of the proposed method.  相似文献   

13.
This paper studies the adaptive asymptotically stabilizing control problem for a class of uncertain nonlinear systems by the partial-state feedback. The input-to-state stability (ISS) is used to describe the dynamic uncertainties, and a novel Nussbaum function is resorted to counteract the unknown identical control directions. The damping terms with the estimates of unknown disturbance bounds are inserted in control design to handle the nonvanishing external disturbances. It can be seen that all signals in closed-loop are bounded and the system states converge to zero asymptotically in spite of the uncertainties. Finally, a simulation example is introduced to show the effectiveness of the presented control scheme.  相似文献   

14.
This paper investigates the fixed-time neural network adaptive (FNNA) tracking control of a quadrotor unmanned aerial vehicle (QUAV) to achieve flight safety and high efficiency. By combining radial basis function neural network (RBFNN) with fixed time adaptive sliding mode algorithm, a novel radial basis function neural network adaptive law is proposed. In addition, an extended state/disturbance observer (ESDO) is proposed to solve the problem of unmeasurable state and external interference, which can obtain reliable state feedback and interference input. Unlike most other ESO applications, this paper does not set the uncertainty model and external disturbances as total disturbances. Instead, the external disturbances are observed by extending the states and the observed states are fed back to the controller to cancel the disturbances. In view of the time-varying resistance coefficient and inertia torque in the QUAV model, the neural network is introduced so that the controller does not need to consider these nonlinear uncertainties. Finally, a numerical example is given to verify the effectiveness of the coupled non-simplified QUAV model.  相似文献   

15.
This paper is concerned with an event-triggered sliding mode control (SMC) scheme for trajectory tracking in autonomous surface vehicles (ASVs). First, an event-triggered variable that consists of tracking error, desired trajectory and exogenous input of the reference system is introduced to decrease the magnitude of the robust SMC term. Then, the reaching conditions of the designed event-triggered sliding mode are established. Moreover, the event-triggered induced errors that exist in the rotation matrix of the ASV are analyzed. In the presence of parameter uncertainties and external disturbances, the proposed event-triggered SMC scheme can ensure the control accuracy and low-frequency actuator updates. Then both actuator wear and energy consumption of the actuators can be reduced comparing with the traditional time-triggered controller. The proposed controller not only guarantees uniform ultimate boundedness of the tracking error but also ensures non-accumulation of inter-execution times. The results are illustrated through simulation examples.  相似文献   

16.
The dynamics of Pressurized Heavy Water Reactor (PHWR) are complex and open-loop unstable in nature. In such systems, parametric and input disturbances may cause instability if the control system fails to reject these disturbances. For such a large, unstable and uncertain process, designing a control scheme with the ability to reject disturbances along with good reference tracking capabilities is a challenging problem. The control scheme should not only be robust but also deterministic and easier to implement. In order to fulfill all these control scheme requirements for nuclear industries, in this work, a Cross-Coupled Nonlinear Proportional Integral Derivative (CCN-PID) scheme is suggested for a 70th order Multi-Input Multi-Output (MIMO) PHWR. It is also shown in this work that the proposed CCN-PID is a simple Cross-Coupled Proportional, Nonlinear Integrator and Derivative (CC-PNID) sliding surface based Sliding Mode Control (SMC). Furthermore, for the output feedback design, a High Gain Observer (HGO) is constructed for the PHWR process. In order to assure robust stability of the closed loop system, a Lyapunov based analysis of the state feedback CCN-PID control scheme is firstly presented. Then, in a similar way, robust stability analysis of HGO is carried out and finally, the stability analysis of the HGO and CCN-PID based output feedback control scheme is evaluated. In order to investigate the performance of the designed HGO based output feedback CCN-PID control scheme, four different scenarios are simulated. The results of these simulations show that the suggested control scheme efficiently rejects parametric uncertainties and input disturbances and corrects the power tilts while keeping the reactor stable and within safe limits of operation. The results also show that the scheme controls the reactor in an effective manner such that the reactor power closely follows the reference signal. The results of the control scheme presented in this work are also compared with earlier works.  相似文献   

17.
Input shaping provides an effective method for suppressing residual vibration of flexible structure systems. However, it is not very robust to parameter uncertainties and external disturbances. In this paper, a closed-loop input shaping method is developed for suppressing residual vibration of multi-mode flexible structure systems with parameter uncertainties and external disturbances. The proposed scheme integrates both input shaping control and discrete-time neuro-sliding mode output feedback control (NSMOFC). The input shaper is designed for the reference model and implemented outside of the feedback loop to achieve the exact elimination of residual vibration. In the feedback loop, the discrete-time NSMOFC technique is employed to make the closed-loop system behave like the reference model with input shaper, where the residual vibration is suppressed. The selection of switching surface and the existence of sliding mode have been addressed. The knowledge of upper bound of uncertainties is not required. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed closed-loop input shaping control scheme.  相似文献   

18.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   

19.
This paper proposes a data-driven terminal sliding mode decoupling controller with prescribed performance for a class of discrete-time multi-input multi-output systems in the presence of external disturbances and uncertainties. First, utilizing a discrete-time extended state observer and a compact form dynamic linearization data model, we derive a new data-driven mothod and establish the relationship between the input and output signals of controlled plant. Moreover, the disturbances, uncertainties, and couplings are suppressed owing to the application of the terminal sliding mode technique. Combined with the principle of prescribed performance control, the terminal sliding mode law with prescribed performance is derived. With the proposed data-driven method, the tracking error is lower, and the decoupling ability is improved. Furthermore, the stability of the control system is proven. Finally, a simulation is conducted on a three-tank system to demonstrate the effectiveness of the proposed scheme.  相似文献   

20.
This paper proposes anti-oscillation and chaos control scheme for the fractional-order brushless DC motor system wherein there exist unknown dynamics, immeasurable states and chaotic oscillation. Aimed at immeasurable states, the high-gain observers with fast convergence are presented to obtain the information of system states. To compensate uncertainties existing in the dynamic system, a finite-time echo state network with a weight is proposed to approximate uncertain dynamics while its weight is tuned by a fractional-order adaptive law online. Meanwhile a fractional-order filter is introduced to deal with the repeated derivative of the backstepping. Based on the fractional-order Lyapunov stability criterion, the anti-oscillation and chaos control scheme integrated with a high-gain observer, an echo state network and a filter are proposed by using recursive steps of backstepping. The proposed scheme guarantees the boundedness of all signals of the closed-loop system in the sense of global asymptotic stability, and also suppresses chaotic oscillation. Finally, the effectiveness of our scheme is demonstrated by simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号