首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
<正>数列求和是数列的重要内容之一,是高考必考内容.除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面就谈谈这类问题的解决方法和技巧.一、分组求和法如果数列的通项公式可分为几个等差、等比或常见的数列,这时就要分别求和,然后再相加.譬如数列{cn=an+bn},其中数列{an}、{bn}分别是等差、对比数列,前n项和Sn=(a1+b1)+(a1+b2)+…+(an+bn)=(a1+a2+…+an)+(b1+b2+…+bn).例1推测数列112,214,318,4116,…的前n项和Sn.解Sn=112+214+318+…+n+12()n=(1+2+3+…+n)+  相似文献   

2.
<正>数列求和是数列的重要内容之一,是高考必考内容.除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面就谈谈这类问题的解决方法和技巧.一、分组求和法如果数列的通项公式可分为几个等差、等比或常见的数列,这时就要分别求和,然后再相加.譬如数列{cn=an+bn},其中数列{an}、{bn}分别是等差、对比数列,前n项和Sn=(a1+b1)+(a1+b2)+…+(an+bn)=(a1+a2+…+an)+(b1+b2+…+bn).例1推测数列112,214,318,4116,…的前n项和Sn.解Sn=112+214+318+…+n+12()n=(1+2+3+…+n)+  相似文献   

3.
设{an}为等差数列,{bn}为等比数列,记αn=anbn,文中讨论了数列{αn}的有限项的求和问题;当{bn}满足一定条件时,{αn}的所有项的和的求解问题;设βn=a2nbn,当数列{βn}中的{bn}满足一定条件时,所有项的求和问题等.得到了一些结论,并给出了几个有关的例题.  相似文献   

4.
1.分组某此既非等差,又非等比的数列,可拆开为等差数列、等比数列或常见的数列,分别求和. 例1 数列{an}的前n项和Sn=2an-1,数列{bn}满足b1=3,bn+1=an+bn(n∈N*). (1)证明数列{an}为等比数列; (2)求数列{bn}的前n项和Tn. 解(1)由Sn=2an-1,n∈N*,所以  相似文献   

5.
设{an}为等差数列,{bn}为等比数列,则数列{an·bn}可称为等差乘等比型数列.此数列的求和方法中最为典型的是“错位相减法”,这也是目前大多数学生采用的方法(大多数教师也是这么教的).除了错位相减法,  相似文献   

6.
1问题提出最近听了一节"数列求和"的校内公开课,上课老师讲到:"对于数列{1/(an~2+bn+c)}(a≠0),只要an2+bn+c能分解为两个多项式的乘积,则数列{1/(an~2+bn+c)}的前n项和就可采用裂项法求和."果真如此吗?  相似文献   

7.
正数列求和一直是高考的热点内容.通过研究近几年的高考试卷我们可以发现,通项形如"dn=an bn+cn(其中bn为周期数列)"的数列{dn}的求和问题正悄然升温.我们暂且称数列{dn}为"类周期数列".一、并项与迭代求和策略在"类周期数列"{dn}中,设数列{bn}的周期为T(T∈*N),数列{dn}的前n项和为Sn.将数列{dn}从第一项起,依次每连续的T项"捆绑"合并成一项,构造一个新数列{pk}(其中pk=dTk-(T-1)+dTk-(T-2)+…+dTk-1+dTk,k∈*N),并求其通项公式.当数列{dn}的项数n为T的倍数(即n=Tm,m∈*N)时,  相似文献   

8.
积分和导数是新教材新增内容之一.导数作为解决数学问题的一个重要的工具,已引起中学数学教师的重视.导数在中学数学中的应用,如用导数研究函数的性质,用导数解决不等式问题,导数在解析几何中的应用等,在各级各类教辅报刊杂志中多有论述;但导数在数列问题,尤其在数列求和问题中的应用却很少见到.因此,笔者在这方面进行了一些探索.下面,主要从两方面谈“先积分再求导思想”在数列求和中的应用,供参考.1先积分再求导思想在{anbn}型数列求和中的应用,其中{an}为等差数列,{bn}为等比数列.数列求和常用方法有公式法、倒序相加法、错位相减法等,除…  相似文献   

9.
在数列综合问题中蕴含着许多重要的数学思想 ,如归纳思想、函数思想、方程思想、递推思想、化归思想、分类讨化思想 ,在这些思想的指导下产生许多解决数列问题的方法 ,让学生充分理解和掌握这些思想和方法 ,对提高解决数列综合问题的能力很为重要 .一、归纳思想通过对命题在特殊情况下的考察与探索 ,发现并归纳出一般性的结论 ,再运用数学的方法对结论进行证明 ,这种归纳思想形成了解决数列问题的一种重要方法———观察、归纳、猜想、证明 .例 1 设Sn 是数列 {an}的前n项和 ,且Sn =32 an-32 (n∈N ) ,数列 {bn}的通项公式为bn =4n +3 (n…  相似文献   

10.
形如an=f(n)×qn(其中f(n)是关于n的多项式)的数列可用错位相减法求和,但f(n)的次数较高时用错位相减法比较麻烦.下面就来探讨拆项在相关数列问题中的应用. 一、拆项在数列求和中的应用 1.可行性分析 如果能找到一个数列{bn},使得an =bn+1-bn,那么数列{an}的前n项和Sn=a1 +a2+…+an=(b2-b1)+(b3-b2)+…+(bn+1-b1)一般地,当an=bn+k-bn或an=bn-bn+k(其中n∈N+,k∈N+,且k为常数)时,都可快速求和.  相似文献   

11.
对于分式数列{k/n(n+d)}求和。一般都是将通项an=k/n(n+d)变形为an=k/d(1/n-1/n+d)的形式,然后进行叠加求和,方法通用且计算简便;而等差数列{an}与等比数列{bn}的相应项乘积构成的数列{anbn}求和,一般地采用“错位相减法”,方法通用,但计算量大,结果往往是“方法会,计算不对”.对于这类数列求和,能否也采崩裂项求和呢?回答是肯定的!请看:  相似文献   

12.
定理 设数列 {an}是以d为公差的等差数列 ,Sn 为 {an}的前n项和 ,记bn=Snn ,则数列 {bn}是以d2 为公差的等差数列 .简证 数列 {an}是以d为公差的等差数列 ,则 Sn =na1+n(n- 1)2 d ,∴bn =Snn =a1+(n- 1)· d2 .易知 {bn}是以a1为首项 ,d2 为公差的等差数列 .利用这一性质 ,可以方便地解决等差数列中某些与前n项和有关的问题 ,方法简练、实用 ,也易于被同学们接受 .下面举例说明 .例 1 设 {an}是等差数列 ,Sn 为数列 {an}的前n项和 .已知S5=2 8,S10 =36 ,求S17.解 记bn =Snn ,由定理知 ,数列 {bn}是等差数列 ,设其公差为d′ ,则d′=…  相似文献   

13.
例1 设等差数列{an}为4,7,10,13,16,19,……,等差数列{bn}为5,10,15,20,……,求数列{bn}中的项是数列{an}中的项的3倍的所有项构成的数列{Cn}的通项公式.  相似文献   

14.
王刚 《数学教学》2007,(5):24-25
若数列{cn}的通项公式为cn=an·bn,其中数列{an}是等差数列,数列{bn}是公比不为  相似文献   

15.
对于满足{an+1=x1an+y1bn+z1 bn+1=x2an+y2bn+z2(n∈N^*)的数列{an}、{bn},它们的递推关系呈现线性交替、彼此相关,咋一看着实让人眼花缭乱、无从下手.解决这类双数列递推问题往往需要较强的观察力、构造力和变通性,可以很好地考查学生转化化归、知识迁移能力以及数学运算、数学建模等学科素养,具有较高的考查意义和选拔功能!本文试图从简单的常规数列入手,由浅入深、逐步揭开呈线性交错的双数列通项问题的面纱!  相似文献   

16.
1问题提出 问题1我们知道,两个等差数列的和(差)数列{an±bn}仍成等差数列,两个等比数列的积(商)数列{an·bn}({an/bn})仍成等比数列,那么两个等差数列的积数列以及两个等比数列的和数列是否仍然保持类似的性质?  相似文献   

17.
若{an}为等差数列,{bn}为等比数列,则我们称数列{anbn}为差比型数列。差比型数列前n项和的求解在数列求和中占有重要地位。现通过一道高考题,给出差比型数列前n项和的三种求解方法,供大家参考。  相似文献   

18.
高中数学(苏教版)选修4—2的矩阵与变换中研究了一个数列问题: 例1已知数列{an},{bn}满足{an+1=an+2bn,bn+1=3a+2bn.  相似文献   

19.
<正>1.设数列{an}是等差数列,且其首项为a1(a1>0),公差为2,前n项和为Sn,S11/2,S2(1/2),S31/2成等差数列。求数列{an}的通项公式。2.已知数列{an}、{bn}满足a1=2,2an=1+anan+1,bn=an-1,设数列{bn}的前n项和为Sn,令Tn=S2n-Sn。(1)求数列{...  相似文献   

20.
(2012年高考江苏卷第20题)已知各项均为正数的两个数列{an}和{bn}满足:an+1=an+bn/a2n+b2n,n∈N*.(1)设bn+1=1+bn/an,n∈N*,求证数列{(bn/an)2}是等差数列;(2)设bn+1=2·bn/an,n∈N*,且{an}是等比数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号