首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Learning environment,motivation, and achievement in high school science   总被引:1,自引:0,他引:1  
In a study of the relationship between high school students' perceptions of their science learning environments and their motivation, learning strategies, and achievement, 377 students in 22 introductory science classrooms completed surveys in the fall and spring of their ninth‐grade year. Hierarchical linear regression was used to model the effects of variables at both the classroom and individual level simultaneously. High intraclass agreement (indicated by high parameter reliability) on all classroom environment measures indicated that students shared perceptions of the classroom learning environment. Controlling for other factors, shared perceptions that only the most able could succeed in science classrooms and that instruction was fast‐paced and focused on correct answers negatively predicted science achievement, as measured on a districtwide curriculum‐linked test. Shared perceptions that classrooms focused on understanding and independent thinking positively predicted students' self‐reported satisfaction with learning. Implications of these results for both teaching and research into classroom environments are discussed. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 347–368, 2003  相似文献   

2.
Conclusions It is imperative that the education given to United States children include adequate science taught in a way that will encourage the retention of all students; however, as half the population is female and females are underrepresented in the fields of mathematics and science, it is especially important that females be encouraged in these areas. Teacher education has been challenged to develop programs that produce teachers who understand the need for equitable science classrooms and who have the skills necessary to produce them. Several suggestions have been given for teacher education programs in science. First, college professors must examine their courses for gender bias. They must model equitable classroom strategies by planning activities that encourage the females to become active participants in the learning process and by using language that is gender inclusive. Second, definite instruction should be given to help the preservice and inservice teachers address their own attitudes toward science and children. Third, specific attention must be paid to assessing teachers in the following areas: (a) developing active, inquiry-based instruction; (b) developing classrooms in which constructive talking is the norm; (c) using cooperative groups correctly; (d) decreasing stereotyping of males, females, and scientists; and (e) using language that is gender inclusive.  相似文献   

3.
What are the barriers to technology‐rich inquiry pedagogy in urban science classrooms, and what kinds of programs and support structures allow these barriers to be overcome? Research on the pedagogical practices within urban classrooms suggests that as a result of many constraints, many urban teachers' practices emphasize directive, controlling teaching, that is, the “pedagogy of poverty” (Haberman, 1991 ), rather than the facilitation of students' ownership and control over their learning, as advocated in inquiry science. On balance, research programs that advocate standards‐based or inquiry teaching pedagogies demonstrate strong learning outcomes by urban students. This study tracked classroom research on a technology‐rich inquiry weather program with six urban science teachers. The teachers implemented this program in coordination with a district‐wide middle school science reform. Results indicated that despite many challenges in the first year of implementation, students in all 19 classrooms of this program demonstrated significant content and inquiry gains. In addition, case study data comprised of twice‐weekly classroom observations and interviews with the six teachers suggest support structures that were both conducive and challenging to inquiry pedagogy. Our work has extended previous studies on urban science pedagogy and practices as it has begun to articulate what role the technological component plays either in contributing to the challenges we experienced or in helping urban science classrooms to realize inquiry science and other positive learning values. Although these data outline results after only the first year of systemic reform, we suggest that they begin to build evidence for the role of technology‐rich inquiry programs in combating the pedagogy of poverty in urban science classrooms. © 2002 John Wiley & Sons, Inc. J Res Sci Teach 39: 128‐150, 2002  相似文献   

4.
5.

Informal learning experiences have risen to the forefront of science education as being beneficial to students' learning. However, it is not clear in what ways such experiences may be beneficial to students; nor how informal learning experiences may interface with classroom science instruction. This study aims to acquire a better understanding of these issues by investigating one aspect of science learning, scientific reasoning ability, with respect to the students' informal learning experiences and classroom science instruction. Specifically, the purpose of this study was to investigate possible differences in students' scientific reasoning abilities relative to their informal learning environments (impoverished, enriched), classroom teaching experiences (non-inquiry, inquiry) and the interaction of these variables. The results of two-way ANOVAs indicated that informal learning environments and classroom science teaching procedures showed significant main effects on students' scientific reasoning abilities. Students with enriched informal learning environments had significantly higher scientific reasoning abilities compared to those with impoverished informal learning environments. Likewise, students in inquirybased science classrooms showed higher scientific reasoning abilities compared to those in non-inquiry science classrooms. There were no significant interaction effects. These results indicate the need for increased emphases on both informal learning opportunities and inquiry-based instruction in science.  相似文献   

6.
This investigation examined 10th‐grade biology students' decisions to enroll in elective science courses, and explored certain attitudinal perceptions of students that may be related to such decisions. The student science perceptions were focused on student and classroom attitudes in the context of differing learning cycle classrooms (high paradigmatic/high inquiry, and low paradigmatic/low inquiry). The study also examined possible differences in enrollment decisions/intentions and attitudinal perceptions among males and females in these course contexts. The specific purposes were to: (a) explore possible differences in students' decisions, and in male and female students' decisions to enroll in elective science courses in high versus low paradigmatic learning cycle classrooms; (b) describe patterns and examine possible differences in male and female students' attitudinal perceptions of science in the two course contexts; (c) investigate possible differences in students' science perceptions according to their decisions to enroll in elective science courses, participation in high versus low paradigmatic learning cycle classrooms, and the interaction between these two variables; and (d) examine students' explanations of their decisions to enroll or not enroll in elective science courses. Questionnaire and observation data were collected from 119 students in the classrooms of six learning cycle biology teachers. Results indicated that in classrooms where teachers most closely adhered to the ideal learning cycle, students had more positive attitudes than those in classrooms where teachers deviated from the ideal model. Significantly more females in high paradigmatic learning cycle classrooms planned to continue taking science course work compared with females in low paradigmatic learning cycle classrooms. Male students in low paradigmatic learning cycle classrooms had more negative perceptions of science compared with males in high paradigmatic classrooms, and in some cases, with all female students. It appears that using the model as it was originally designed may lead to more positive attitudes and persistence in science among students. Implications include the need for science educators to help teachers gain more thorough understanding of the learning cycle and its theoretical underpinnings so they may better implement this procedure in classroom teaching. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 1029–1062, 2001  相似文献   

7.
When evaluating equity, researchers often look at the “achievement gap.” Privileging knowledge and skills as primary outcomes of science education misses other, more subtle, but critical, outcomes indexing inequitable science education. In this comparative ethnography, we examined what it meant to “be scientific” in two fourth‐grade classes taught by teachers similarly committed to reform‐based science (RBS) practices in the service of equity. In both classrooms, students developed similar levels of scientific understanding and expressed positive attitudes about learning science. However, in one classroom, a group of African American and Latina girls expressed outright disaffiliation with promoted meanings of “smart science person” (“They are the science people. We aren't like them”), despite the fact that most of them knew the science equally well or, in one case, better than, their classmates. To make sense of these findings, we examine the normative practice of “sharing scientific ideas” in each classroom, a comparison that provided a robust account of the differently accessible meanings of scientific knowledge, scientific investigation, and scientific person in each setting. The findings illustrate that research with equity aims demands attention to culture (everyday classroom practices that promote particular meanings of “science”) and normative identities (culturally produced meanings of “science person” and the accessibility of those meanings). The study: (1) encourages researchers to question taken‐for‐granted assumptions and complexities of RBS and (2) demonstrates to practitioners that enacting what might look like RBS and producing students who know and can do science are but pieces of what it takes to achieve equitable science education. © 2011 Wiley Periodicals, Inc., Inc. J Res Sci Teach 48: 459–485, 2011  相似文献   

8.
This study used secondary data from the My Teaching Partner-Math/Science 2013–2016 randomized control trial to explore whether equitable sociocultural classroom interactions (see Curenton et al., 2019) were associated with the skills of 105 four- and five-year-olds (52% boys; drawn from 20 unique video recordings of preschool teachers/classrooms; 43% were Black, Latine, Asian, or other racially marginalized learners). Equitable interactions predicted children's skills with effect sizes ranging from small (0.01–0.44) to large (1.00). Moderation analyses revealed that when classrooms had more racially marginalized learners, teachers’ use of equitable disciplinary and personalized learning practices were associated with higher executive functioning gains across prekindergarten. Findings illustrate how classroom composition can be a key indicator between equitable classroom interactions and young children's early skills.  相似文献   

9.
Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.  相似文献   

10.
This study demonstrates the potential for collaborative research among participants in local settings to effect positive change in urban settings characterized by diversity. It describes an interpretive case study of a racially, ethnically, and socioeconomically diverse eighth grade science classroom in an urban magnet school in order to explore why some of the students did not achieve at high levels and identify with school science although they were both interested in and knowledgeable about science. The results of this study indicated that structural issues such as the school's selection process, the discourses perpetuated by teachers, administrators, and peers regarding “who belongs” at the school, and negative stereotype threat posed obstacles for students by highlighting rather than mitigating the inequalities in students' educational backgrounds. We explore how a methodology based on the use of cogenerative dialogues provided some guidance to teachers wishing to alter structures in their classrooms to be more conducive to all of their students developing identities associated with school science. Based on the data analysis, we also argue that a perspective on classrooms as communities of practice in which learning is socially situated rather than as forums for competitive displays, and a view of students as valued contributors rather than as recipients of knowledge, could address some of the obstacles. Recommendations include a reduced emphasis on standardized tasks and hierarchies, soliciting unique student contributions, and encouraging learning through peripheral participation, thereby enabling students to earn social capital in the classroom. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1209–1228, 2010  相似文献   

11.
This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher–students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants’ instruction with computer technology was (Teacher) initiation–(Student and Teacher) response sequences–(Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers’ learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers’ own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.  相似文献   

12.
In this study, we explore oral and written work (plays and rap songs) of students in a sixth‐grade all African‐American urban science class to reveal ways affective and social aspects are intertwined with students' cognition. We interpret students' work in terms of the meeting of various genres brought by the students and teachers to the classroom. Students bring youth genres, classroom genres that they have constructed from previous schooling, and perhaps their own science genres. Teachers bring their favored classroom and science genres. We show how students' affective reactions were an integral part of their constructed scientific knowledge. Their knowledge building emerged as a social process involving a range of transactions among students and between students and teacher, some transactions being relatively smooth and others having more friction. Along with their developing science genre, students portrayed elements of classroom genres that did not exist in the classroom genre that the teacher sought to bring to the class. Students' work offered us a glimpse of students' interpretations of gender dynamics in their classrooms. Gender also was related to the particular ways that students in that class included disagreement in their developing science genre. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 579–605, 2002  相似文献   

13.
Teachers can perpetuate stereotypic cultural beliefs regarding girls' ability in, aptitude for, and suitability for science by their teaching practices and behaviors. As teachers have a major influence on girls' career choices their equitable teaching practices in the classroom are important to encourage all students, but especially girls, to continue with science. Researchers have studied science classrooms and have defined common strategies and practices that can help create an equitable classroom environment. The purpose of this study was to determine if high school biology student teachers could transfer learned equitable teaching strategies to actual teaching and the support conditions necessary for that transfer. Two support conditions were assessed: cooperating teacher and peer group support. Seven preservice teachers were placed into three groups. One group had both support conditions, the second group had only one condition (peer support), and the third group did not have either support condition. Both qualitative and quantitative data sources were collected. Results showed that preservice teachers could transfer learned equitable teaching into actual teaching practice. However, they were more successful in achieving the transfer if they were supervised by cooperating teachers who are sensitized to the issue of gender equity in education. Being involved in a peer support group was not as crucial to using the strategies as having a supportive cooperative teacher.  相似文献   

14.
Our short-term longitudinal study explored undergraduate students' experiences with performing authentic science practices in the classroom in relation to their science achievement and course grades. In addition, classroom experiences (felt recognition as a scientist and perceived classroom climate) and changes over a 10-week academic term in STEM (science, technology, engineering, and mathematics) identity and motivation were tested as mediators. The sample comprised 1,079 undergraduate students from introductory biology classrooms (65.4% women, 37.6% Asian, 30.2% White, 25.1% Latinx). Using structural equation modeling (SEM), our hypothesized model was confirmed while controlling for class size and GPA. Performing science practices (e.g., hypothesizing or explaining results) positively predicted students' felt recognition as a scientist; and felt recognition positively predicted perceived classroom climate. In turn, felt recognition and classroom climate predicted increases over time in students' STEM motivation (expectancy-value beliefs), STEM identity, and STEM career aspirations. Finally, these factors predicted students' course grade. Both recognition as a scientist and positive classroom climate were more strongly related to outcomes among underrepresented minority (URM) students. Findings have implications for why large-format courses that emphasize opportunities for students to learn science practices are related to positive STEM outcomes, as well as why they may prove especially helpful for URM students. Practical implications include the importance of recognition as a scientist from professors, teaching assistants, and classmates in addition to curriculum that engages students in the authentic practices of science.  相似文献   

15.
Internationally there is concern in relation to the traditional learning environments evident in many science classrooms and the levels of understanding of science developed by students in such environments. Further, students have generally been found to be poor in relation to thinking in terms of models or theories and in terms of evidence to support their theories. The majority of research on classroom environments has focused on characterising the learning environment in classrooms rather than monitoring changes to a class's or an individual's perceptions to their learning environments as a consequence of interventions. This study reports an attempt to change the learning environment in a classroom and documents changes in participants' perceptions of their learning environments and the corresponding changes in a teacher's and her students' perceptions of their reasoning and understanding that such changes facilitated. A community of learners in which students and teachers began to understand the processes and the value of reasoning in terms of theories and evidence was developed as a result of the involvement of the researchers with the teacher and her class of students. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Attaining the vision for science teaching and learning emphasized in the Framework for K‐12 Science Education and the next generation science standards (NGSS) will require major shifts in teaching practices in many science classrooms. As NGSS‐inspired cognitively demanding tasks begin to appear in more and more science classrooms, facilitating students' engagement in high‐level thinking as they work on these tasks will become an increasingly important instructional challenge to address. This study reports findings from a video‐based professional development effort (i.e., professional development [PD] that use video‐clips of instruction as the main artifact of practice to support teacher learning) to support teachers' learning to select cognitively demanding tasks and to support students' learning during the enactment of these tasks in ways that are aligned with the NGSS vision. Particularly, we focused on the NGSS's charge to get students to make sense of and deeply think about scientific ideas as students try to explain phenomena. Analyses of teachers' pre‐ and post‐PD instruction indicate that PD‐participants began to adopt instructional practices associated with facilitating these kinds of student thinking in their own classrooms. The study has implications for the design of video‐based professional development for science teachers who are learning to facilitate the NGSS vision in science classrooms.  相似文献   

17.

Advocates of educational reform often describe classroom instruction as inauthentic. That is, most classroom learning activities are structured around artificial contexts for learning, and students only engage in tasks and remember information at superficial levels. Some teachers are attempting to break traditional classroom practices by creating authentic contexts for learning. To date, most of the research on authentic classrooms has described the processes teachers have used to develop the classroom environment (learning activities, resources, etc.); however, few have examined authentic classrooms from the students' perspective: “What do students think about authentic classrooms?” The purpose of this qualitative study was to examine a unique learning environment at a large, Midwest high school to understand how students perceived that environment. Most of the students reported a positive experience and described the classroom as fun and exciting with real-world relevance. However, there were several students who did not share these views, and many students were not successful.

  相似文献   

18.
This article reports on analyses of the instructional practices of six middle- and high-school science teachers in the United States who participated in a research-practice partnership that aims to support reform science education goals at scale. All six teachers were well qualified, experienced, and locally successful—respected by students, parents, colleagues, and administrators—but they differed in their success in supporting students' three-dimensional learning. Our goal is to understand how the teachers' instructional practices contributed to their similarities in achieving local success and to differences in enabling students' learning, and to consider the implications of these findings for research-practice partnerships. Data sources included classroom videos supplemented by interviews with teachers and focus students and examples of student work. We also compared students' learning gains by teacher using pre–post assessments that elicited three-dimensional performances. Analyses of classroom videos showed how all six teachers achieved local success—they led effectively managed classrooms, covered the curriculum by teaching almost all unit activities, and assessed students' work in fair and efficient ways. There were important differences, however, in how teachers engaged students in science practices. Teachers in classrooms where students achieved lower learning gains followed a pattern of practice we describe as activity-based teaching, in which students completed investigations and hands-on activities with few opportunities for sensemaking discussions or three-dimensional science performances. Teachers whose students achieved higher learning gains combined the social stability characteristic of local classroom success with more demanding instructional practices associated with scientific sensemaking and cognitive apprenticeship. We conclude with a discussion of implications for research-practice partnerships, highlighting how partnerships need to support all teachers in achieving both local and standards-based success.  相似文献   

19.
ABSTRACT

One of the blended learning strategies that researchers and educators commonly use in higher education is Flipped Classroom. The purpose of this case study was to explore how both professors and students perceive student engagement in flipped classrooms. Three college professors who implemented flipped classrooms and their 14 students participated in the study. Three individual faculty interviews and three student focus group interviewers were conducted. Five components of the utilization-focused evaluation model were used in the data coding. The findings revealed both positive and negative opinions depending on how they implemented the flipped classroom including the engagement of students and the environment. Faculty participants who fully implemented the flipped model had positive opinions about the implementation and student engagement, finding the model helped increase student performance and grades. In addition, the majority of student participants liked the challenges offered by the flipped classroom, which increased their engagement.  相似文献   

20.
Learner‐centered approaches to science and mathematics instruction assume that only when students are active participants will learning be deep, enduring, and enjoyable, and transfer to contexts beyond the classroom. Although their beneficial effects are well known, the extent to which learner‐centered practices are used in college classrooms may be low. Surveys of undergraduate science and math majors reveal general dissatisfaction with how courses in their majors are taught, and their number is half what it was 2 decades ago. In response, federally funded systemic reform initiatives have targeted increasing the use learner‐centered instruction in science and mathematics courses to improve undergraduate education generally and the training of preservice teachers specifically. Few data exist regarding how effective these initiatives have been or how frequently learned‐centered instruction occurs as assessed from faculty's perspective, which may not corroborate undergraduate perceptions. Accordingly, a survey was developed to assess the use of learner‐centered techniques and was administered to science and math professors of Louisiana over the Internet. The return rate was 28%. Analyses reveal that they are used infrequently, but when used, are applied to all aspects of teaching. Data also suggest that federal funding has been slightly effective in promoting its use. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 566–584, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号