首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
再生制动系统作为混合动力汽车的一个子系统.对提高整车性能指标有着重要意义。根据车辆的动力学结构出发,考虑了制动稳定性要求及再生制动的约束条件,提出了一种并行制动力分配策略。在仿真软件ADVISOR中建立了控制策略仿真模型,并嵌入到整车模型中。与原ADVISOR制动力分配策略的仿真比较结果验证了所提出控制策略的有效性及实用性.  相似文献   

2.
《科技风》2021,(19)
为充分利用新能源汽车制动时消耗的能量,同时考虑低速频繁制动回收能量低且反复充放电危害蓄电池寿命的问题,本文提出了以电池荷电状态、制动间隔时间、制动强度和车速作为输入变量,制动力分配系数为输出变量的新能源汽车制动能量回收控制策略,改进并重新设计了模糊控制器。经仿真试验结果表明,本文所提出的能量回收控制策略在有效提升电池安全性的同时,保持着出色的能量回收效率。  相似文献   

3.
本文提出了电动汽车再生制动的由来,归纳了再生制动的特点:电机制动转矩有限、再生制动波动较大、SoC会对再生制动造成影响,分析了再生制动的制约因素:SoC、电池组充电功率、车速及驱动轮。并且基于制动力分配,提出了再生制动的并行制动力控制策略。  相似文献   

4.
为满足地铁车辆的运行需要,其制动系统应采用多样化的制动方式。基于此,本文分析了地铁车辆制动系统的关键技术,从制动力分配、机械制动与电制动结合使用、闸瓦材质选择、车轮热处理等方面进行了探究。  相似文献   

5.
随着汽车工业的不断发展,汽车数量增加的同时,产生了大量的环境污染以及能源短缺等问题。有关研究表明,在存在频繁的制动与启动的城市工况条件下,有效回收汽车的制动能量,其一次充电后的行驶里程会增加15%~30%。因此,制动能量的回收具有重要的意义。以混合动力汽车(HEV)为研究对象,通过分析汽车制动过程中的影响因素和能量回收的控制策略,来采用模糊控制策略对HEV的制动能量进行回收。使用了sugeno模糊模型来建立模糊控制器,对制动过程中的电制动力矩和摩擦制动力矩进行分配,提高了制动过程中车辆的稳定性和能量回收的高效性。  相似文献   

6.
在前轮驱动电动汽车制动能量回收控制策略基础上,提出了四轮电机轮毂驱动控制策略,并在ADVISOR中建立四轮驱动电动汽车的制动能量回收仿真模型,选择比较符合中国公路行驶工况的10-15工况进行仿真,并对所建立的四轮轮毂驱动下的制动控制策略进行评价。通过仿真得出制动中能量回收效率达到48.2%,能量回收效果较好,文中提出的控制策略有一定的实用性。  相似文献   

7.
城市轨道车辆采用的制动方式为电制动和空气制动的混合制动。制动力的管理方法一般为以电制动主,优先施加;空气制动在电制动不足时进行补充,补充时平均分配至每个转向架上;在到达列车黏着极限时,剩余制动力施加在拖车上。  相似文献   

8.
永磁同步电动机的启动过程控制对电机实现平稳快速启动有着重要的意义,介绍了一种基于模糊自适应PID控制策略的永磁同步电动机启动控制策略,并进行了仿真研究,验证了这种控制策略的有效性。  相似文献   

9.
文章对传统汽车的制动过程进行了动力学分析,得出了传统汽车的理想和实际制动力分配以及制动液压力分配策略.并分析了感载比例阀在汽车制动过程中对压力的调节作用,为台架试验应用感载比例阀根据栽荷的变化调节前后轮的液压制动力打下了基础.  相似文献   

10.
通常,再生制动仅对驱动轴有效。为回收尽可能多的制动能量,必须控制电动机产生特定量的制动力。目前并联式的混合制动系统,由于其结构和控制简单被广泛应用,但对电制动的利用尚不充分。为此,基于纯电动轿车液压制动系统设计制动能量回收系统,着重探讨一种串联式混合制动系统的控制策略。  相似文献   

11.
本文从电机的工作原理出发,通过牵引与制动工况的比较,阐明动力制动力的产生过程。从深层次理解半电阻制动曲线的形成,以及SS3电阻动轮廓线的绘制,最后通过综合练习,巩固授课内容。  相似文献   

12.
无刷直流轮毂电机的调速性能将直接影响轮毂电机驱动电动汽车的行驶稳定性。针对电动汽车动、静态特性的要求,以电机转速响应迅速且稳定为控制目标,在MATLAB/Simulink中建立无刷直流电机控制系统整体仿真模型。通过转速外环模糊PI控制和电流内环滞环控制方法实现无刷直流电机双闭环控制,对比仿真分析传统PI控制和模糊PI控制策略对电机调速性能的影响,仿真结果表明,模糊PI控制能使电机转速响应迅速且稳定,从而改善电动汽车的动、静态性能。  相似文献   

13.
采用不确定性方法对车辆制动过程中的随机参数进行了分析。针对制动过程中的瞬时车速以及最大制动力建立可靠性模型,将随机理论和随机摄动技术引入到车辆制动性能分析,利用不确定性理论给出了分析结果的置信区间和置信度,提高了车辆制动性能分析的准确度。与蒙特卡洛随机模拟方法得到的计算结果进行对比,验证了本文方法的正确性和准确性。  相似文献   

14.
甘达淅 《大众科技》2012,14(3):129-131
为研究电动汽车的电池和整车的动力性能,建立了电动汽车的蓄电池、电机及整车的力学和数学模型,基于ADVISOR软件建立了车辆、电池、电机和整车的仿真模型。根据整车设计技术参数进行车辆行驶性能仿真,选取CYC_ECE循环工况,得出了速度和SOC值变化的仿真结果。与实车试验结果对比表明,建立的模型是合理,动力系统设计可行。  相似文献   

15.
针对传统的刹车控制方法在一些复杂路段进行刹车控制的时候,存在刹车距离大,控制时间长的缺陷.为此提出了一种基于模糊控制理论的汽车智能刹车控制方法.通过建立汽车整车动力模型,通过深入研究刹车控制原理,结合模糊控制理论完成刹车的智能控制.结果表明模糊控制器可以使得车辆的实时滑移率快速到达并保持在期望滑移率附近,从而使车辆获得最大的地面制动力以提高刹车性能,并在缩短制动距离同时保持方向的可操控性,相比于传统的控制器取得了更好的控制效果.  相似文献   

16.
袁伟光 《科技通报》2012,28(4):60-62
利用虚拟样机软件ADAMS/CAR,建立了整车模型和分离路面模型,并在Matlab/Simulink环境下建立了ABS的控制模型。在此基础上对带有ABS的车辆进行了联合仿真,分析其在分离路面上的制动性能,最后与不带ABS车辆的制动性能进行了对比。联合仿真结果表明:带ABS的车辆在制动效果、行驶方向稳定性上具有明显优势,同时也说明了ABS联合仿真具有较高的可行性与有效性,可为ABS的研究提供一定依据。  相似文献   

17.
电动汽车采用电子差速控制策略取代机械传动系统直接驱动轮毂电机以实现车辆的精确控制。轮毂电机驱动方式相较于发动机驱动,具有响应快速、能量利用率高、动力学可控性好等特点。但由于传统机械差速器的取消也使得控制策略的安全性和可靠性成为影响电动车驾驶安全的关键。文章针对电动汽车电子差速控制策略进行研究,建立了整车7自由度模型,设计了车辆状态参数观测器,并提出了基于Ackermann转向模型的分层控制策略对车辆进行控制。基于Carsim和Simulink进行联合仿真,对所提出的方法进行验证。结果表明:该控制策略能有效减小转向过程中的质心侧偏角和横摆角速度,有效改善车辆动态性能。  相似文献   

18.
汤仁彪 《大众科技》2005,(11):184-184,189
文章利用SIMULINK及其中的电力系统模块集Simpowersystem建立了三相异步电机及制动系统的动态仿真模型,获得了电机的制动机械特性,并对电机定子电压两相反接与能耗制动过程进行了仿真,仿真结果与理论分析一致.  相似文献   

19.
《科技风》2017,(21)
通常四轮独立驱动的电动汽车电子差速系统都是基于转矩分配进行的,本文提出了一种通过对各轮速进行转速分配的电子差速系统,利用Ackermann-Jeantand转向模型,实时计算电子差速过程中随着转角角度以及车辆速度变化的各个车轮的所需转速,并分析了转向时转向轮之间的转矩分配问题。在carsim联合matlab仿真中通过多种车辆工况仿真实验验证了所提出的算法的实用性以及可行性,仿真结果表明,整车系统动态性能良好,电子差速控制策略可以满足四轮独立驱动电动汽车的行驶要求。  相似文献   

20.
阮观强  张振东 《科技通报》2012,28(2):161-163
介绍了一种以单片机为控制核心的制动力大小警示系统的研究与开发:采用制动油压传感器,以LED数码显示器在车内向驾驶员告知制动油压具体值,检测制动系统是否正常工作;以LED红色警示灯在后窗,向后面行车驾驶员提供制动力参考,使其控制合适车距,避免追尾。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号