首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study explored teacher perspectives on the use of socioscientific issues (SSI) and on dealing with ethics in the context of science instruction. Twenty‐two middle and high school science teachers from three US states participated in semi‐structured interviews, and researchers employed inductive analyses to explore emergent patterns relative to the following two questions. (1) How do science teachers conceptualize the place of ethics in science and science education? (2) How do science teachers handle topics with ethical implications and expression of their own values in their classrooms? Profiles were developed to capture the views and reported practices, relative to the place of ethics in science and science classrooms, of participants. Profile A comprising teachers who embraced the notion of infusing science curricula with SSI and cited examples of using controversial topics in their classes. Profile B participants supported SSI curricula in theory but reported significant constraints which prohibited them from actualizing these goals. Profile C described teachers who were non‐committal with respect to focusing instruction on SSI and ethics. Profile D was based on the position that science and science education should be value‐free. Profile E transcended the question of ethics in science education; these teachers felt very strongly that all education should contribute to their students' ethical development. Participants also expressed a wide range of perspectives regarding the expression of their own values in the classroom. Implications of this research for science education are discussed. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 353–376, 2006  相似文献   

2.
What Do Students Gain by Engaging in Socioscientific Inquiry?   总被引:1,自引:1,他引:1  
The question of what students gain by engaging in socioscientific inquiry is addressed in two ways. First, relevant literature is surveyed to build the case that socioscientific issues (SSI) can serve as useful contexts for teaching and learning science content. Studies are reviewed which document student gains in discipline specific content knowledge as well as understandings of the nature of science. SSI are also positioned as vehicles for addressing citizenship education within science classrooms. Although the promotion of citizenship goals seems widely advocated, the specifics of how this may be accomplished remain underdeveloped. To address this issue, we introduce socioscientific reasoning as a construct which captures a suite of practices fundamental to the negotiation of SSI. In the second phase of the project, interviews with 24 middle school students from classes engaged in socioscientific inquiry serve as the basis for the development of an emergent rubric for socioscientific reasoning. Variation in practices demonstrated by this sample are explored and implications drawn for advancing socioscientific reasoning as an educationally meaningful and assessable construct.  相似文献   

3.
Functional scientific literacy demands an informed citizenry capable of negotiating controversial socioscientific issues (SSI). Perspective taking is critical to SSI implementation as it enables understanding of the diverse cognitive and emotional perspectives of others. Science teacher educators must therefore facilitate teachers’ promotion of classroom environments that value diverse perspectives. The purpose of this theoretical paper is to propose the HARTSS model through which successful practices that promote perspective taking in the humanities, arts, and social sciences are identified and translated into socioscientific contexts, thereby developing an array of promising interventions designed for science teacher educators to foster perspective taking in current and future science teachers and their students.  相似文献   

4.
The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students’ learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers’ critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate this process. Four undergraduate preservice elementary teachers were studied over the course of one semester. Results indicate that the teachers navigated multiple learning goals, as well as their own subject-matter knowledge, informal reasoning about SSI, and role identity, in their critique and adaptation of SSI-oriented science instructional materials. Implications for science teacher education and the design of curriculum materials in respect to SSI are discussed.  相似文献   

5.
In the present STEM (Science, Technology, Engineering, and Mathematics)-driven society, socioscientific issues (SSI) have become a focus globally and SSI research has grown into an important area of study in science education. Since students attending the social and science programs have a different focus in their studies and research has shown that students attending a science program are less familiar with argumentation practice, we make a comparison of the supporting reasons social science and science majors use in arguing different SSI with the goal to provide important information for pedagogical decisions about curriculum and instruction. As an analytical framework, a model termed SEE-SEP covering three aspects (of knowledge, value, and experiences) and six subject areas (of sociology/culture, economy, environment/ecology, science, ethics/morality, and policy) was adopted to analyze students’ justifications. A total of 208 upper secondary students (105 social science majors and 103 science majors) from Sweden were invited to justify and expound their arguments on four SSI including global warming, genetically modified organisms (GMO), nuclear power, and consumer consumption. The results showed that the social science majors generated more justifications than the science majors, the aspect of value was used most in students’ argumentation regardless of students’ discipline background, and justifications from the subject area of science were most often presented in nuclear power and GMO issues. We conclude by arguing that engaging teachers from different subjects to cooperate when teaching argumentation on SSI could be of great value and provide students from both social science and science programs the best possible conditions in which to develop argumentation skills.  相似文献   

6.
Researchers and policy-makers have recognized the importance of including and promoting socioscientific argumentation in science education worldwide. The Swedish curriculum focuses more than ever on socioscientific issues (SSI) as well. However, teaching socioscientific argumentation is not an easy task for science teachers and one of the more distinguished difficulties is the assessment of students’ performance. In this study, we investigate and compare how science and Swedish language teachers, participating in an SSI-driven project, assessed students’ written argumentation about global warming. Swedish language teachers have a long history of teaching and assessing argumentation and therefore it was of interest to identify possible gaps between the two groups of teachers’ assessment practices. The results showed that the science teachers focused on students’ content knowledge within their subjects, whereas the Swedish language teachers included students’ abilities to select and use content knowledge from reliable reference resources, the structure of the argumentation and the form of language used. Since the Swedish language teachers’ assessment correlated more with previous research about quality in socioscientific argumentation, we suggest that a closer co-operation between the two groups could be beneficial in terms of enhancing the quality of assessment. Moreover, SSI teaching and learning as well as assessment of socioscientific argumentation ought to be included in teacher training programs for both pre- and in-service science teachers.  相似文献   

7.
8.
The purpose of this paper is to compare and contrast between two theoretical frameworks for addressing nature of science (NOS) and socioscientific issues (SSI) in school science. These frameworks are critical thinking (CT) and argumentation (AR). For the past years, the first and second authors of this paper have pursued research in this area using CT and AR as theoretical frameworks, respectively. Yacoubian argues that future citizens need to develop a critical mindset as they are guided to (1) practice making judgments on what views of NOS to acquire and (2) practice making decisions on SSI through applying their NOS understandings. Khishfe asserts that AR is an important component of decision making when dealing with SSI and the practice in AR in relation to controversial issues is needed for informed decision making. She argues that AR as a framework may assist in the development of more informed understandings of NOS. In this paper, the authors delve into a dialogue for (1) elucidating strengths and potential of each framework, (2) highlighting challenges that they face in their research using the frameworks in question, (3) exploring the extent to which the frameworks can overlap, and (4) proposing directions for future research.  相似文献   

9.
Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513–536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74–101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513–536, 2004). Lee and Witz (International Journal of Science Education 31:931–960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers’ practices of teaching SSI. This study presents case studies that investigated the development of secondary school students’ science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students’ understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371–391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.  相似文献   

10.
ABSTRACT

Previous research has documented that students who engage with socioscientific issues can acquire some of the complex competences and skills typically related to scientific literacy. But an emerging field of research on science teachers’ understanding and use of socioscientific issues, has documented that a range of challenges hinders the uptake of socioscientific issues. In this study, we investigated the interpretation and implementation of socioscientific issues among Danish biology teachers. We conducted five in-depth group interviews and validated the emergent themes from the teachers’ talk-in-interaction by distributing a questionnaire. Our findings suggest that the participating teachers generally harbour a content-centred interpretation of socioscientific issues which manifests itself in at least three separate ways. First, the teachers generally use socioscientific issues as a vehicle to teach factual biological content. Second, the teachers emphasised mastery of factual content in their assessment. Third, the teachers tended to reduce socioscientific issues to specific biological contents in a way may preclude students from engaging with the real socioscientific issue. Our findings are particularly significant for science educators, policy-makers and curriculum designers, as we argue that key aspects of this content-centred interpretation may be a coping strategy used to navigate a divided curriculum.  相似文献   

11.
The educative goal of citizenship education through science education converges to the declared purpose of the SSI research movement. Socioscientific issues formulated in science education research covering topics as biotechnology, environmental issues, sustainable development, energy choices, have been introduced in French Middle Schools. But citizenship is often not clarified and can be multiple. After having clarified who is the citizen targeted by SSI research movement, the concept of citizen in the French curriculum needs to be clarify. What do these citizens have in common with the citizen that a sociology literature review let see oscillating between obedience and critical thinking has also been investigated. The paper also looks at the teachers’ views and their contribution to citizenship education through socioscientific topics described in the national curriculum. From the analysis, different teachers’ views of citizenship education have been highlighted: a normative citizenship education in connection with civility and rules and an emancipatory citizenship education to develop pupils’ skills such as searching and evaluating information, argumentation and critical thinking in order to enable pupils to build their own argued opinion and to participate to public debates. This last emancipatory view of citizenship education is congruent with the aim of social empowerment within the SSI research movement.  相似文献   

12.
Communication skills are one of the most important competencies for 21st century global citizens. Our guiding presupposition was that socioscientific issues (SSIs) could be used as an effective pedagogical tool for promoting students’ communication skills by increasing peer interactions, stimulating students’ reasoning, and in constructing shared social knowledge. We implemented a SSI program on gene modification (GM) technology to 132 9th graders in South Korea and investigated to what extent this SSI instruction contributed to enhancing students’ communication skills. Data sources included pre- and post-scores on the Communication Skills Questionnaire (CSQ), semi-structured interviews with the students and instructor, and classroom observations. The results demonstrated that SSI instruction could bring about a moderately large impact on students’ ability to understand the key ideas of others and to value others’ perspectives, as well as a marginal positive effect on developing active assertions. However, SSI instruction appeared to have a lesser impact on students’ ability to develop shared understanding. Overall, this research indicates the potential that even a limited SSI classroom could have in terms of promoting students’ communication skills in the context of their regular science class.  相似文献   

13.
In response to Tali and Yarden’s presentation of their efforts to teach socioscientific issues, the discussants address issues of authentic versus simulated activities; teachers as learners or co-creators with their students; educating people to contribute to science-based decisionmaking; the development of such socioscientific competence; the relationship between group or participatory processes and individual development; framing real world cases for every age of student; making space to delve into the historical and social background to any scientific theory, practice, or application; educating teachers who can coach students in socioscientific inquiry; and facing off against the traditional and resurgent emphasis on highstakes, content-oriented testing of students in science.  相似文献   

14.
This research project aims to investigate how students in lower secondary school experience work with socioscientific issues (SSI). The six socioscientific cases developed and used in this project are relevant according to characteristics of SSI and to the national curriculum. Approximately 1,500 students in Sweden have worked with one SSI case chosen by the teachers. A questionnaire-based instrument was used to measure the affective domain of students?? attitudes towards and interest in science before starting to work with the case and a second questionnaire after finishing a case. The second student questionnaire, measured the situational characteristics of the SSI work and perceived cognitive and affective outcomes. According to the students?? self-reported experience, all cases were interesting and related to a current issue. Most cases were equally interesting to boys and girls, the only exception was You are what you eat, which girls found more interesting than boys did. Almost all students claim that they learnt new facts, learnt to argue for their standpoint and to search and evaluate information during the work with the cases. The girls?? average scores were higher on several aspects of learning outcomes. Furthermore the students, especially the girls, perceived that the outcome of working with SSI had relevance for their future, with some cases more relevant than others. The more interesting the student found the case, the more they claimed they learnt. The students do not, however, claim that they learnt more science than during ordinary lessons.  相似文献   

15.
This study is a part of a larger study that examined using socioscientific issues (SSI) as a form of effective science teaching. The purpose was to investigate how teaching a year‐long curriculum using SSI affects science learning outcomes. In this report, we examine the effects of a SSI‐driven curriculum on the development of students’ moral sensitivity. Our results indicate that development of moral sensitivity can be promoted through science learning experiences embedded in SSI. Results also suggest that moral sensitivity is contextually dependent. Implications for teaching are discussed.  相似文献   

16.
The “Treasures in the Sea: Use and Abuse” unit that deals with authentic socioscientific issues related to the Mediterranean was developed as part of a national effort to increase scientific literacy. The unit aimed to enhance active participation of the learners and encourage higher order thinking in class by applying teaching methods that reduce the unfamiliarity felt by students. This was expected through an explicit use of a variety of teaching and assessment-for-learning methods, suitable for Science for All students. Our main goal was to examine the culture of Science for All classes in which the unit was enacted. In order to address the main learning objectives, we monitored students’ performances in tasks that required the higher order thinking skills of argumentation and value judgment, which are central constituents of decision-making processes. We show that while socioscientific issues were discussed in whole class and small group sessions, and students’ argumentation improved, there is still a long way to go in applying a thinking culture in non-science major classes. We suggest that science teachers should shift from traditional content-based and value-free approach, to a sociocultural approach that views science as a community practice and the students as active participants in decision-making processes.  相似文献   

17.
In the socioscientific issues (SSI) classroom, students need to cross the border between the subcultures of science (i.e., school science vs. everyday science). Traditional school contexts tend to present science as positivistic knowledge and unshakable truth unaffected by sociocultural factors. In contrast, everyday science, including SSI, is more nuanced, context-based, socially and culturally embedded. Thus, learning in an SSI classroom requires students to make additional efforts to successfully navigate between the subcultures of science. The expected norms located within these two educational contexts can create academic and sociocultural tensions for students. It is therefore necessary to explore the tensions caused these differential norms in order to successfully implement SSI. Through the lens of cultural-historical activity theory, we attempted to identify possible tensions that originate by implementing SSI instruction in a setting where teachers and students are accustomed to traditional lecture-based classroom instruction. One hundred thirty ninth graders at a public middle school located in Seoul, South Korea, participated in SSI programs on genetic modification technology during seven class periods over three to 4 weeks. Data was collected by classroom observation, audio-taping while students participated in various types of discourse, and semistructured interviews. We identified four noteworthy phenomena including intolerance of uncertainty, scientism, a sense of rivalry, and reaching an expedient and easy consensus. By revealing and understanding these tensions and phenomena, we aim to help inform teachers (and teacher educators) recognize instructional clues that can change not only students' epistemological views and attitudes toward science and science classes, but also better navigate the norms of classroom culture.  相似文献   

18.
Science education in recent years has increasingly emphasized the connections between knowledge and matters of social importance. Socioscientific issues (SSIs)—complex, often controversial issues linked to the development of science and technology—are widely recognized as a valuable arena for the school curriculum to foster students’ scientific literacy. This paper reviews the research literature on how science teachers teach socioscientific issues with 25 empirical studies published between 2004 and 2019. The results show that teachers generally hold a partially informed understanding of SSI-based teaching. Multifarious challenges facing teachers in teaching SSIs are mainly at the teacher, student, and policy levels. However, our findings suggest that teachers lack explicit strategies to cope with these challenges and that SSI-based teaching should not rely on individual teachers alone. We argue for more support for teachers to improve the quality of their implementation of SSIs. This review has implications for education policymakers, teacher educators, school leaders, and teachers to respond to the challenges facing teachers in teaching SSIs collaboratively. Potential directions for further research are also discussed.  相似文献   

19.
The inclusion of socioscientific issues (SSIs) in the science curriculum is a well-established trend internationally. Apart from claims about its innate value, one of the rationales for this approach is its potential for helping to counter declining interest and participation. SSIs involve the use of science and are of interest to society, also raising ethical and moral dilemmas. Introducing such problems presents a significant and usually cross-disciplinary challenge to curriculum developers and teachers. The aim of this paper is to examine how this challenge has been met when judged against contemporary views of the issues concerned. It first explores how SSIs have been interpreted in an important and innovative science course for students aged 14–16 in England, entitled Twenty First Century Science. This paper analyses the Twenty First Century Science textbooks, focusing in detail on two SSIs, reproductive genetic technology and climate change. For each of these issues, the key ideas present in the social science literature surrounding the problems are outlined. This review is then used as an analytical framework to examine how the issues are presented in the textbooks. It is argued in this paper that the perspectives the textbooks take on these issues largely do not include perspectives from social science disciplines. It goes on to suggest that the development of future SSI-based curricula needs to take account of these wider, often interdisciplinary, perspectives.  相似文献   

20.
The purpose of this qualitative study was to identify and explain the origins of physics and chemistry teacher candidates' beliefs about teaching about ethics through socioscientific issues (SSI). This study utilized a series of in‐depth interviews, while the participants (n = 12) were enrolled in a 9‐month teacher education program at an urban university in Canada. Our data analysis revealed that beliefs about teaching physics and chemistry using SSI derive from a complex web of fundamental beliefs exemplified by four archetypes representing the subject‐specific identities of our teacher candidates—Model Scientist/Engineer, Model Individual, Model Teacher, and Model Citizen. Furthermore, we found that the justification for belief change required by a particular teacher candidate depends on these subject‐discipline identities. Thus, the presence of each archetype in preservice classrooms has ramifications for the way a teacher educator should encourage his or her students to include SSI in their teaching. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 380–401, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号