首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to theoretically articulate and empirically assess the role of computer scaffolds. In this project, several examples of educational software were developed to scaffold the learning of students performing high level cognitive activities. The software used in this study, Artemis, focused on scaffolding the learning of students as they performed information seeking activities. As 5th grade students traveled through a project-based science unit on photosynthesis, researchers used a pre-post design to test for both student motivation and student conceptual understanding of photosynthesis. To measure both variables, a motivation survey and three methods of concept map analysis were used. The student use of the scaffolding features was determined using a database that tracked students’ movement between scaffolding tools. The gain scores of each dependent variable was then correlated to the students’ feature use (time and hits) embedded in the Artemis Interface. This provided the researchers with significant relationships between the scaffolding features represented in the software and student motivation and conceptual understanding of photosynthesis. There were a total of three significant correlations in comparing the scaffolding use by hits (clicked on) with the dependent variables and only one significant correlation when comparing the scaffold use in time. The first significant correlation (r = .499, p < .05) was between the saving/viewing features hits and the students’ task value. This correlation supports the assumption that there is a positive relationship between the student use of the saving/viewing features and the students’ perception of how interesting, how important, and how useful the task is. The second significant correlation (r = 0.553, p < 0.01) was between the searching features hits and the students’ self-efficacy for learning and performance. This correlation supports the assumption that there is a positive relationship between the student use of the searching features and the students’ perception of their ability to accomplish a task as well as their confidence in their skills to perform that task. The third significant correlation (r = 0.519, p < 0.05) was between the collaborative features hits and the students’ essay performance scores. This correlation supports the assumption that there is a positive relationship between the student use of the collaborative features and the students’ ability to perform high cognitive tasks. Finally, the last significant correlation (r = 0.576, p < 0.01) was between the maintenance features time and the qualitative analysis of the concept maps. This correlation supports the assumption that there is a positive relationship between the student use of the maintenance features and student conceptual understanding of photosynthesis. This material is based upon work supported by the National Science Foundation (REC9980055). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.  相似文献   

2.
3.
This mixed-methods study analysed over 200 interviews from 20 seventh-grade students with learning disabilities (LD). Students were instructed how to use a note-taking intervention during science lectures. The interview analyses were supported by pre- and post-intervention quantitative data. Data suggest that the intervention helped students identify important information; systematised the process of listening to, interpreting and using that information; and offered students a means by which to organise the information they were hearing. A discussion about metacognition and attention explores how these processes altered students’ awareness of their own learning, as well as how they equipped students with a new strategy for holding onto and translating information from their science lectures into a useful set of notes. These findings have implications for how theorists conceptualise the relationship between metacognition and attention and how teachers use scaffolding to support the learning of students with LD.  相似文献   

4.
This study examined how scaffolds and student achievement levels influence inquiry and performance in a problem-based learning environment. The scaffolds were embedded within a hypermedia program that placed students at the center of a problem in which they were trying to become the youngest person to fly around the world in a balloon. One-hundred and eleven seventh grade students enrolled in a science and technology course worked in collaborative groups for a duration of 3 weeks to complete a project that included designing a balloon and a travel plan. Student groups used one of three problem-based, hypermedia programs: (1) a no scaffolding condition that did not provide access to scaffolds, (2) a scaffolding optional condition that provided access to scaffolds, but gave students the choice of whether or not to use them, and (3) a scaffolding required condition required students to complete all available scaffolds. Results revealed that students in the scaffolding optional and scaffolding required conditions performed significantly better than students in the no scaffolding condition on one of the two components of the group project. Results also showed that student achievement levels were significantly related to individual posttest scores; higher-achieving students scored better on the posttest than lower-achieving students. In addition, analyses of group notebooks confirmed qualitative differences between students in the various conditions. Specifically, those in the scaffolding required condition produced more highly organized project notebooks containing a higher percentage of entries directly relevant to the problem. These findings suggest that scaffolds may enhance inquiry and performance, especially when students are required to access and use them.  相似文献   

5.
6.
Two investigations were conducted in this study. In the first experiment, the effects of two types of interactivity with a computer simulation were compared: experimentation versus observation interactivity. Experimentation interactivity allows students to use simulations to conduct virtual experiments, whereas observation interactivity allows students to observe segmented video clips of the simulation at their own pace and sequence. In the second experiment, the effects of two types of scaffolding for experimentation interactivity were compared: the driving question versus structured prompt scaffolding. A total of 128 eighth-grade students were involved. The learning outcomes examined include the students’ understanding of the concepts in the simulation, their learning time, total numbers of virtual experiments conducted or observed, and learning efficiency. All four designs resulted in comparable learning gains for the students. The driving question scaffolding resulted in better learning efficiency, whereas the structured prompt scaffolding supported students in conducting more virtual experiments.  相似文献   

7.
One way to help students engage in higher-order thinking is through scaffolding, which can be defined as support that allows students to participate meaningfully in and gain skill at a task that is beyond their unassisted abilities. Most research on computer-based scaffolds assesses the average impact of the tools on learning outcomes. This is problematic in that it assumes that computer-based scaffolds impact different students in the same way. In this conceptual paper, we use activity theory and the theory of affordances to build an initial theoretical framework on how and why K-12 students use computer-based scaffolds. Specifically, we argue that affordances and motives drive how and why K-12 students use computer-based scaffolds. Then we examine empirical studies to gather preliminary support for the framework. Implications for research on and the design of computer-based scaffolds are explored.  相似文献   

8.
Having students inspect and use each other's work is a promising way to advance inquiry-based science learning. Research has nevertheless shown that additional guidance is needed for students to take full advantage of the work produced by their peers. The present study investigated whether scaffolding through an integrated support tool could bring about the desired effect. This tool was embedded in an online inquiry learning environment and outlined the steps in searching for information in peer-created concept maps. It also contained specific directions to assess the quality of the retrieved information. The effectiveness of this search guidance tool was investigated during an inquiry-based science project. Main results indicated that high school students who were supported by the tool (n?=?19) developed a more differentiated and interconnected conceptual understanding than students who did not receive this scaffold (n?=?23). However, the search guidance tool also seemed to put additional demands on students' self-regulatory abilities, and might therefore require some practice or regulatory support to reach its full potential.  相似文献   

9.
10.
This study examined the extent to which fifth-grade students participate in online argumentation and the argument patterns they produced about the inquiry-based investigations completed using the Science Writing Heuristic approach in their science classes. One hundred twenty-nine students from five classes of two teachers in a Midwestern public school completed two inquiry-based investigation units, one per semester, followed by asynchronous online discussions using the Moodle forum. Among the 129 students, 107 students produced 739 notes in the plant investigation online discussion and 111 students produced 686 notes in the human health investigation online discussion. Results indicate that students were actively engaged in the online discussions about inquiry investigations with comments being focused on providing more evidence and backing for claims and negotiating evidence in both investigations. The students also engaged in challenging and querying the test procedures and reference sources as the basis for evidence. Implications are discussed for science teaching and learning and further study on argument-based inquiry in online environments.  相似文献   

11.
This article explores the effect of computerized scaffolding with different scaffolds (structuring vs. problematizing) on intra-group metacognitive interaction. In this study, we investigate 4 types of intra-group social metacognitive activities; namely ignored, accepted, shared and co-constructed metacognitive activities in 18 triads (6 control groups; no scaffolds and 12 experimental groups; 6 structuring scaffolds and 6 problematizing scaffolds). We found that groups receiving scaffolding showed significantly more intra-group interactions in which the group members co-construct social metacognitive activities. Groups receiving problematizing scaffolds showed significantly less ignored and more co-constructed social metacognitive interaction compared to groups receiving structuring scaffolds. These findings indicate that scaffolding positively influenced the group members’ intra-group social metacognitive interaction. We also found a significant relation between students’ participation in intra-group social metacognitive interaction and students’ metacognitive knowledge. Twelve percent of the variance in students’ metacognitive knowledge was explained by their participation in intra-group shared social metacognitive interaction. Therefore, future research should consider how to design scaffolds that elicit intra-group social metacognitive interaction among group members to enhance the development of students’ metacognitive knowledge.  相似文献   

12.
Hypermedia learning environments (HLE) unevenly present new challenges and opportunities to learning processes and outcomes depending on learner characteristics and instructional supports. In this experimental study, we examined how one such HLE—MetaTutor, an intelligent, multi-agent tutoring system designed to scaffold cognitive and metacognitive self-regulated learning (SRL) processes—interacts with learner’s prior domain knowledge to affect their note-taking activities and subsequent learning outcomes. Sixty (N = 60) college students studied with MetaTutor for 120 min and took notes on hypermedia content of the human circulatory system. Log-files and screen recordings of learner-system interactions were used to analyze notes for several quantitative and qualitative variables. Results show that most note-taking was a verbatim copy of instructional content, which negatively related to the post-test measure of learning. There was an interaction between prior knowledge and pedagogical agent scaffolding, such that low prior knowledge students took a greater quantity of notes compared to their high prior knowledge counterparts, but only in the absence of MetaTutor SRL scaffolding; when agent SRL scaffolding was present, the note-taking activities of low prior knowledge students were statistically equivalent to the number of notes taken by their high prior knowledge counterparts. Theoretical and instructional design implications are discussed.  相似文献   

13.
This content analysis of articles in the Social Science Citation Index journals from 1995 to 2009 was conducted to provide science educators with empirical evidence regarding the effects of scaffolding on science learning. It clarifies the definition, design, and implementation of scaffolding in science classrooms and research studies. The results show important cross-study evidence that most researchers have adopted a qualitative approach (67.44%), focused on learning context (72.09%), and used high school students as participants (53.49%). In designing scaffoldings, researchers have shown a preference for long-term explicit scaffolding using multiple representations to promote procedural and strategic skills and alternative assessments of learner performance. Nevertheless, scaffolding issues related to teacher education are unexpectedly few (11.63%) in empirical research. The results also indicate that there are too few studies to guide researchers in considering fading scaffolds for active learning (9.30%). Future directions and suggestions toward conducting research regarding scaffolding are provided.  相似文献   

14.
In response to the calls to improve and deepen scientific understanding and literacy, considerable effort has been invested in developing sustainable technology-enhanced learning environments to improve science inquiry. Research has provided important guidance for scaffolding learning in mathematics and science. However, these reports have provided relatively little insight into how the different types of scaffolds can (or should) be implemented in dynamic, everyday classroom settings. In this qualitative case study, we examined how students solve scientific problems in technology-enhanced classrooms and how peer-, teacher-, and technology-enhanced scaffolds influenced student inquiry. The results indicated that students manifested distinct inquiry patterns when solving scientific problems and integrated different types of scaffolds to facilitate inquiry activities. These findings suggest that to support scientific inquiry in problem-solving contexts, technology-enhanced scaffolds are effective when supported by clear project goals, relevant evidence, peer- and teacher-assessments, and exemplars of knowledge articulation.  相似文献   

15.
Student interaction in school contexts is a topic that has been researched from many different perspectives. However, the role of students as tutors scaffolding other peers is not normally addressed, since studies are usually focused on the teacher. Moreover, considering the many technologies that can support students’ work nowadays, studies describing specific practices are still needed in order to understand the many possibilities and constraints that can emerge from the use of these tools in the field of education. This exploratory case study aims to extend research on scaffolding between students, presenting data from an ethnographic study where a commercial video game was introduced as part of the curricular activities. Analytically, the scaffolding metaphor is the departing point to describe in detail how the scaffolding process took place, focusing on its purposes and on the role of students as tutors. Our findings reveal how students offered mostly procedural scaffoldings, performing tutor functions such as highlighting relevant features, reducing levels of freedom or controlling the frustration. Results highlight that students can perform scaffolds, and this should be considered as part of the classroom design, making this process visible. Moreover, specific features of the video game enhanced these interactions, which should also be considered when designing game learning environments in the future.  相似文献   

16.
Dynamic visualisations capture aspects of scientific phenomena that are difficult to communicate in static materials and benefit from well-designed scaffolds to succeed in classrooms. We review research to clarify the impacts of dynamic visualisations and to identify instructional scaffolds that mediate their success. We use meta-analysis to synthesise 47 independent comparisons between dynamic and static materials and 76 comparisons that test the effect of specific instructional scaffolds. These studies show that dynamic visualisations are better than static visuals at promoting conceptual inferences about science, consistent with the success of inquiry instruction in science. To realise this potential of dynamic visualisations, instruction needs to help students use the dynamic visualisation to make sense of their own ideas. Scaffolds that are most successful include prompts for reflection, prompts to distinguish among parts of the visualisation, visual cues that identify salient features, multiple visualisations presented sequentially, and interactive features that govern the pacing of activities. We extract guidelines from this research to help researchers plan future studies of visualisations, designers create and refine instructional materials using visualisations, and practitioners customise instruction that features visualisations.  相似文献   

17.
ABSTRACT

Promoting preservice science teachers’ experimentation competency is required to provide a basis for meaningful learning through experiments in schools. However, preservice teachers show difficulties when experimenting. Previous research revealed that cognitive scaffolding promotes experimentation competency by structuring the learning process, while metacognitive and multimedia support enhance reflection. However, these support measures have not yet been tested in combination. Therefore, we decided to use cognitive scaffolding to support students’ experimental achievements and supplement it by metacognitive and multimedia scaffolds in the experimental groups. Our research question is to what extent supplementing cognitive support by metacognitive and multimedia scaffolding further promotes experimentation competency. The intervention has been applied in a two-factorial design to a two-month experimental course for 63 biology teacher students in their first bachelor year. Pre-post-test measured experimentation competency in a performance assessment. Preservice teachers worked in groups of four. Therefore, measurement took place at group level (N?=?16). Independent observers rated preservice teachers’ group performance qualitatively on a theory-based system of categories. Afterwards, experimentation competency levels led to quantitative frequency analysis. The results reveal differing gains in experimentation competency but contrary to our hypotheses. Implications of combining scaffolding measures on promoting experimentation competency are discussed.  相似文献   

18.
Computing has become highly visual as interactive programs become increasingly prevalent. Computer science students need to be able to create effective visual displays as part of interface implementation. This paper describes a course covering graphic design topics relevant to computer science students. In this course, students learn the basic visual elements, the visual organizational principles and how to use them in the context of the digital page. The other topics of this paper are the presentation of course information to the computer science student, the implementation of the course information as praxis, course project construction, and a method for critiquing student projects. Curriculum Integration will also be discussed as a feature towards achieving a seamless and collaborative experience.  相似文献   

19.
This study investigated the effects of the use of scaffolds in written classroom assessments through the voices of both native English speakers and English language learners from two middle schools. Students responded to assessment tasks in writing, by speaking aloud using think aloud protocols, and by reflecting in a post-assessment interview. The classroom assessment tasks were designed to engage students in scientific sense making and multifaceted language use, as recommended by the Next Generation Science Standards. Data analyses showed that both groups benefitted from the use of scaffolds. The findings revealed specific ways that modifications were supportive in helping students to comprehend, visualize and organize thinking, and elicit responses. This study offers a model for both sensitizing teachers and strengthening their strategies for scaffolding assessments equitably.  相似文献   

20.
The ontologies of complexity and learning about complex systems   总被引:1,自引:0,他引:1  
This paper discusses a study of students learning core conceptual perspectives from recent scientific research on complexity using a hypermedia learning environment in which different types of scaffolding were provided. Three comparison groups used a hypermedia system with agent-based models and scaffolds for problem-based learning activities that varied in terms of the types of text based scaffolds that were provided related to a set of complex systems concepts. Although significant declarative knowledge gains were found for the main experimental treatment in which the students received the most scaffolding, there were no significant differences amongst the three groups in terms of the more cognitively demanding performance on problem solving tasks. However, it was found across all groups that the students who enriched their ontologies about how complex systems function performed at a significantly higher level on transfer problem solving tasks in the posttest. It is proposed that the combination of interactive representational scaffolds associated with NetLogo agent-based models in complex systems cases and problem solving scaffolding allowed participants to abstract ontological dimensions about how systems of this type function that, in turn, was associated with the higher performance on the problem solving transfer tasks. Theoretical and design implications for learning about complex systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号