首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了减小了医务人员在工作紧张、简单的重复性较高的操作过程中犯错的机率,对各阶段的输入过程一目了然,本文以主控芯片TMS320LF2407A为主,在进行注射泵设计时,采用TOSHIBA公司生产的一款LCD控制器T6963C,提出了一种全新的显示模式--坐标显示。点阵式液晶显示模块性能稳定、价位较低,适合应用于便携式智能仪器仪表,是一种具有较高显示功能的显示器件。本文介绍了一种DSP控制器的设计方法,用于对内藏T6963C控制器液晶模块进行字符图形显示控制,给出了硬件接口的设计实现以及软件流程图。  相似文献   

2.
We report a new design of microfluidic chip (Multiple electric Field with Uniform Flow chip, MFUF chip) to create multiple electric field strengths (EFSs) while providing a uniform flow field simultaneously. MFUF chip was fabricated from poly-methyl methacrylates (PMMA) substrates by using CO2 laser micromachining. A microfluidic network with interconnecting segments was utilized to de-couple the flow field and the electric field (EF). Using our special design, different EFSs were obtained in channel segments that had an identical cross-section and therefore a uniform flow field. Four electric fields with EFS ratio of 7.9:2.8:1:0 were obtained with flow velocity variation of only 7.8% CV (coefficient of variation). Possible biological effect of shear force can therefore be avoided. Cell behavior under three EFSs and the control condition, where there is no EF, was observed in a single experiment. We validated MFUF chip performance using lung adenocarcinoma cell lines and then used the chip to study the electrotaxis of HSC-3, an oral squamous cell carcinoma cell line. The MFUF chip has high throughput capability for studying the EF-induced cell behavior under various EFSs, including the control condition (EFS = 0).  相似文献   

3.
Electrodeless dielectrophoresis is the best choice to achieve preconcentration of nanoparticles and biomolecules due to its simple, robust, and easy implementation. We designed a simple chip with microchannels and nano-slits in between and then studied the trapping of DNA in high conductive medium and low conductive medium, corresponding to positive and negative dielectrophoresis (DEP), respectively. It is very important to investigate the trapping in media with different conductivities since one always has to deal with the sample solutions with different conductivities. The trapping process was analyzed by the fluorescent intensity changes. The results showed that DNA could be trapped at the nano-slit in both high and low conductive media in a lower electric field strength (10 V/cm) compared to the existing methods. This is a significant improvement to suppress the Joule heating effect in DEP related experiments. Our work may give insight to researchers for DNA trapping by a simple and low cost device in the Lab-on-a-Chip system.  相似文献   

4.
Control of the 3D microenvironment for cultured cells is essential for understanding the complex relationships that biomolecular concentration gradients have on cellular growth, regeneration, and differentiation. This paper reports a microfluidic device for delivering gradients of soluble molecules to cells in an open reservoir without exposing the cells to flow. The cells are cultured on a polyester membrane that shields them from the flow that delivers the gradient. A novel "lid" design is implemented which prevents leakage from around the membrane without requiring sealing agents or adhesives. Once layers are molded, device fabrication can be performed within minutes while at room temperature. Surface gradients were characterized with epifluorescence microscopy; image analysis verified that sharp gradients (~33 μm wide) can be reproducibly generated. We show that heterogeneous laminar flow patterns of Orange and Green Cell Tracker (CT) applied beneath the membrane can be localized to cells cultured on the other side; concentration profile scans show the extent of CT diffusion parallel to the membrane's surface to be 10-20 μm. Our device is ideal for conventional cell culture because the cell culture surface is readily accessible to physical manipulation (e.g., micropipette access), the cell culture medium is in direct contact with the incubator atmosphere (i.e., no special protocols for ensuring proper equilibration of gas concentrations are required), and the cells are not subjected to flow-induced shear forces, which are advantageous attributes not commonly found in closed-channel microfluidic designs.  相似文献   

5.
Spheroid culture is a preferable cell culture approach for some cell types, including hepatocytes, as this type of culture often allows maintenance of organ-specific functions. In this study, we describe a spheroid microarray chip (SM chip) that allows stable immobilization of hepatocyte spheroids in microwells and that can be used to evaluate drug metabolism with high efficiency. The SM chip consists of 300-μm-diameter cylindrical wells with chemically modified bottom faces that form a 100-μm-diameter cell adhesion region surrounded by a nonadhesion region. Primary hepatocytes seeded onto this chip spontaneously formed spheroids of uniform diameter on the cell adhesion region in each microwell and these could be used for cytochrome P-450 fluorescence assays. A row of microwells could also be connected to a microchannel for simultaneous detection of different cytochrome P-450 enzyme activities on a single chip. The miniaturized features of this SM chip reduce the numbers of cells and the amounts of reagents required for assays. The detection of four cytochrome P-450 enzyme activities was demonstrated following induction by 3-methylcholantlene, with a sensitivity significantly higher than that in conventional monolayer culture. This microfabricated chip could therefore serve as a novel culture platform for various cell-based assays, including those used in drug screening, basic biological studies, and tissue engineering applications.  相似文献   

6.
We present in this paper a method for obtaining a low cost and high replication precision 2D (two dimensional) nanofluidic chip with a PET (polyethylene terephthalate) sheet, which uses hot embossing and a thermal bonding technique. The hot embossing process parameters were optimized by both experiments and the finite element method to improve the replication precision of the 2D nanochannels. With the optimized process parameters, 174.67 ± 4.51 nm wide and 179.00 ± 4.00 nm deep nanochannels were successfully replicated into the PET sheet with high replication precision of 98.4%. O2 plasma treatment was carried out before the bonding process to decrease the dimension loss and improve the bonding strength of the 2D nanofluidic chip. The bonding parameters were optimized by bonding rate of the nanofluidic chip. The experiment results show that the bonding strength of the 2D PET nanofluidic chip is 0.664 MPa, and the total dimension loss of 2D nanochannels is 4.34 ± 7.03 nm and 18.33 ± 9.52 nm, in width and depth, respectively. The fluorescence images demonstrate that there is no blocking or leakage over the entire micro- and nanochannels. With this fabrication technology, low cost polymer nanochannels can be fabricated, which allows for commercial manufacturing of nano-components.  相似文献   

7.
Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting. Using this device, cells could form uniformly sized spheroids due to strong cell–cell interactions and the spatial confinement of microfluidic culture chambers. We demonstrated cell spheroid formation and culture in the designed devices using embryonic stem cells, carcinoma cells, and fibroblasts. We further scaled up the device capable of simultaneously forming and culturing 5000 spheroids in a single chip. Finally, we demonstrated harvesting of the cultured spheroids from the device with a simple setup. The harvested spheroids possess great integrity, and the cells can be exploited for further flow cytometry assays due to the ample cell numbers.  相似文献   

8.
We report a microfluidic blood-brain barrier model that enables both physiological shear stress and optical transparency throughout the device. Brain endothelial cells grown in an optically transparent membrane-integrated microfluidic device were able to withstand physiological fluid shear stress using a hydrophilized polytetrafluoroethylene nanoporous membrane instead of the more commonly used polyester membrane. A functional three-dimensional microfluidic co-culture model of the neurovascular unit is presented that incorporates astrocytes in a 3D hydrogel and enables physiological shear stress on the membrane-supported endothelial cell layer.  相似文献   

9.
Detection of individual target cells among a large amount of blood cells is a major challenge in clinical diagnosis and laboratory protocols. Many researches show that two dimensional cells array technology can be incorporated into routine laboratory procedures for continuously and quantitatively measuring the dynamic behaviours of large number of living cells in parallel, while allowing other manipulations such as staining, rinsing, and even retrieval of targeted cells. In this study, we present a high-density cell self-assembly technology capable of quickly spreading over 300 000 cells to form a dense mono- to triple-layer cell arrangement in 5 min with minimal stacking of cells by the gentle incorporation of gravity and peripheral micro flow. With this self-assembled cell arrangement (SACA) chip technology, common fluorescent microscopy and immunofluorescence can be utilized for detecting and analyzing target cells after immuno-staining. Validated by experiments with real human peripheral blood samples, the SACA chip is suitable for detecting rare cells in blood samples with a ratio lower than 1/100 000. The identified cells can be isolated and further cultured in-situ on a chip for follow-on research and analysis. Furthermore, this technology does not require external mechanical devices, such as pump and valves, which simplifies operation and reduces system complexity and cost. The SACA chip offers a high-efficient, economical, yet simple scheme for identification and analysis of rare cells. Therefore, potentially SACA chip may provide a feasible and economical platform for rare cell detection in the clinic.  相似文献   

10.
The application of microfluidic technologies to stem cell research is of great interest to biologists and bioengineers. This is chiefly due to the intricate ability to control the cellular environment, the reduction of reagent volume, experimentation time and cost, and the high-throughput screening capabilities of microscale devices. Despite this importance, a simple-to-use microfluidic platform for studying the effects of growth factors on stem cell differentiation has not yet emerged. With this consideration, we have designed and characterized a microfluidic device that is easy to fabricate and operate, yet contains several functional elements. Our device is a simple polyester-based microfluidic chip capable of simultaneously screening multiple independent stem cell culture conditions. Generated by laser ablation and stacking of multiple layers of polyester film, this device integrates a 10 × 10 microwell array for cell culture with a continuous perfusion system and a non-linear concentration gradient generator. We performed numerical calculations to predict the gradient formation and calculate the shear stress acting on the cells inside the device. The device operation was validated by culturing murine embryonic stem cells inside the microwells for 5 days. Furthermore, we showed the ability to maintain the pluripotency of stem cell aggregates in response to concentrations of leukemia inhibitory factor ranging from 0 to ∼1000 U/ml. Given its simplicity, fast manufacturing method, scalability, and the cell-compatible nature of the device, it may be a useful platform for long-term stem cell culture and studies.  相似文献   

11.
We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experimental results. The proposed device uses the so-called "liquid electrodes" design and can be used with low applied voltages, as low as 10 V(pp). The obtained separation is very efficient, the device being able to achieve a very high purity of platelets of 98.8% with less than 2% cell loss. Its low-voltage operation makes it particularly suitable for point-of-care applications. It could further be used for the separation of other cell types based on their size difference, as well as in combination with other sorting techniques to separate multiple cell populations from each other.  相似文献   

12.
We present design, characterization, and testing of an inexpensive, sheath-flow based microfluidic device for three-dimensional (3D) hydrodynamic focusing of cells in imaging flow cytometry. In contrast to other 3D sheathing devices, our device hydrodynamically focuses the cells in a single-file near the bottom wall of the microchannel that allows imaging cells with high magnification and low working distance objectives, without the need for small device dimensions. The relatively large dimensions of the microchannels enable easy fabrication using less-precise fabrication techniques, and the simplicity of the device design avoids the need for tedious alignment of various layers. We have characterized the performance of the device with 3D numerical simulations and validated these simulations with experiments of hydrodynamic focusing of a fluorescently dyed sample fluid. The simulations show that the width and the height of the 3D focused sample stream can be controlled independently by varying the heights of main and side channels of the device, and the flow rates of sample and sheath fluids. Based on simulations, we also provide useful guidelines for choosing the device dimensions and flow rates for focusing cells of a particular size. Thereafter, we demonstrate the applicability of our device for imaging a large number of RBCs using brightfield microscopy. We also discuss the choice of the region of interest and camera frame rate so as to image each cell individually in our device. The design of our microfluidic device makes it equally applicable for imaging cells of different sizes using various other imaging techniques such as phase-contrast and fluorescence microscopy.  相似文献   

13.
Fluid shear stress (FSS) plays a critical role in regulating endothelium function and maintaining vascular homeostasis. Current microfluidic devices for studying FSS effects on cells either separate high shear stress zone and low shear stress zone into different culturing chambers, or arranging the zones serially along the flow direction, which complicates subsequent data interpretation. In this paper, we report a diamond shaped microfluidic shear device where the high shear stress zone and the low shear stress zone are arranged in parallel within one culturing chamber. Since the zones with different shear stress magnitudes are aligned normal to the flow direction, the cells in one stress group are not substantially affected by the flow-induced cytokine/chemokine releases by cells in the other group. Cell loading experiments using human umbilical vein endothelial cells show that the device is able to reveal stress magnitude-dependent and loading duration-dependent cell responses. The co-existence of shear stress zones with varied magnitudes within the same culturing chamber not only ensures that all the cells are subject to the identical culturing conditions, but also allows the resemblance of the differential shear stress pattern in natural arterial conditions. The device is expected to provide a new solution for studying the effects of heterogeneous hemodynamic patterns in the onset and progression of various vascular diseases.  相似文献   

14.
In this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a "microfluidic drifting" based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics.  相似文献   

15.
We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s–1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library.  相似文献   

16.
The capture and subsequent analysis of rare cells, such as circulating tumor cells from a peripheral blood sample, has the potential to advance our understanding and treatment of a wide range of diseases. There is a particular need for high purity (i.e., high specificity) techniques to isolate these cells, reducing the time and cost required for single-cell genetic analyses by decreasing the number of contaminating cells analyzed. Previous work has shown that antibody-based immunocapture can be combined with dielectrophoresis (DEP) to differentially isolate cancer cells from leukocytes in a characterization device. Here, we build on that work by developing numerical simulations that identify microfluidic obstacle array geometries where DEP–immunocapture can be used to maximize the capture of target rare cells, while minimizing the capture of contaminating cells. We consider geometries with electrodes offset from the array and parallel to the fluid flow, maximizing the magnitude of the resulting electric field at the obstacles'' leading and trailing edges, and minimizing it at the obstacles'' shoulders. This configuration attracts cells with a positive DEP (pDEP) response to the leading edge, where the shear stress is low and residence time is long, resulting in a high capture probability; although these cells are also repelled from the shoulder region, the high local fluid velocity at the shoulder minimizes the impact on the overall transport and capture. Likewise, cells undergoing negative DEP (nDEP) are repelled from regions of high capture probability and attracted to regions where capture is unlikely. These simulations predict that DEP can be used to reduce the probability of capturing contaminating peripheral blood mononuclear cells (using nDEP) from 0.16 to 0.01 while simultaneously increasing the capture of several pancreatic cancer cell lines from 0.03–0.10 to 0.14–0.55, laying the groundwork for the experimental study of hybrid DEP–immunocapture obstacle array microdevices.  相似文献   

17.
In this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a “microfluidic drifting” based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics.  相似文献   

18.
The effects of gradients of bioactive molecules on the cell microenvironment are crucial in several biological processes, such as chemotaxis, angiogenesis, and tumor progression. The elucidation of the basic mechanisms regulating cell responses to gradients requires a tight control of the spatio-temporal features of such gradients. Microfluidics integrating 3D gels are useful tools to fulfill this requirement. However, even tiny flaws in the design or in the fabrication process may severely impair microenvironmental control, thus leading to inconsistent results. Here, we report a sequence of actions aimed at the design and fabrication of a reliable and robust microfluidic device integrated with collagen gel for cell culturing in 3D, subjected to a predetermined gradient of biomolecular signals. In particular, we developed a simple and effective solution to the frequently occurring technical problems of gas bubble formation and 3D matrix collapsing or detaching from the walls. The device here proposed, in Polydimethylsiloxane, was designed to improve the stability of the cell-laden hydrogel, where bubble deprived conditioning media flow laterally to the gel. We report the correct procedure to fill the device with the cell populated gel avoiding the entrapment of gas bubbles, yet maintaining cell viability. Numerical simulations and experiments with fluorescent probes demonstrated the establishment and stability of a concentration gradient across the gel. Finally, chemotaxis experiments of human Mesenchymal Stem Cells under the effects of Bone Morphogenetic Protein-2 gradients were performed in order to demonstrate the efficacy of the system in controlling cell microenvironment. The proposed procedure is sufficiently versatile and simple to be used also for different device geometries or experimental setups.  相似文献   

19.
This study reports a robust method of gene transfection in a murine primary cell model by using a high-density electrodes network (HDEN). By demonstrating high cell viability after gene transfection and successful expression of transgenes including fluorescent proteins, the HDEN device shows great promise as a solution in which reprogramming efficiency using non-viral induction for generation of murine induced pluripotent stem cells (iPSCs) is optimized. High and steady transgene expression levels in host cells of iPSCs can be demonstrated using this method. Moreover, the HDEN device achieved successful gene transfection with a low voltage of less than 180 V while requiring relatively low cell numbers (less than 1.5 × 104 cells). The results are comparable to current conventional methods, demonstrating a reasonable fluorescent-plasmid transfection rate (42.4% in single transfection and 24.5% in triple transfection) and high cell viability of over 95%. The gene expression levels of each iPSC factor was measured to be over 10-fold higher than that reported in previous studies using a single mouse embryonic fibroblast cell. Our results demonstrate that the generation of iPSCs using HDEN transfection of plasmid DNA may be a feasible and safe alternative to using viral transfection methods in the near future.  相似文献   

20.
Robust bubble-free priming of complex microfluidic chips represents a critical, yet often unmet prerequisite to enable their practical and widespread application. Towards this end, the usage of a network of capillary stop valves as a generic design feature is proposed. Design principles, numerical simulations, and their application in the development of a microfluidic cell culture device are presented. This chip comprises eight parallel chambers for the assembly and cultivation of human hepatocytes and endothelial cells. The inlet channel divides into cell chambers, after which the flows are reunited to a single chip outlet. Dimensions and geometry of channels and cell chambers are designed to yield capillary burst pressures sequentially increasing towards the chip outlet. Thus, progress of liquid flow through the device is predefined by design and enclosure of air bubbles inside the microfluidic structures is efficiently avoided. Capillary stop valves were designed using numerical simulations. Devices were fabricated in cyclic olefin polymer. Pressure during filling was determined experimentally and is in good agreement with data obtained from simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号