首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study deals with a school‐based professional development trajectory for secondary science teachers, aiming at scaffolding teachers in open‐inquiry teaching for the topic of water quality. Its design was based on the leading principle of ‘guiding by scaffolding’. Seven experienced teachers participated in institutional meetings and teaching at school. The research focused on designing scaffolding tools, addressing these tools in the meetings, and implementing them in the classroom. The main research data were obtained from meetings, classroom discussions, and observations. The results indicated that the professional development trajectory has promoted teachers’ learning of scaffolding students in open inquiry, especially the ability to know when and how to give students a well‐balanced combination of ‘structure’ for open‐inquiry learning and sufficient ‘space’ for that. The implications for science teacher education are discussed.  相似文献   

2.
ABSTRACT

Research shows that collaborative work promotes student learning and improves social skills, but teachers are still exploring how to best support problem-solving in a small group context, particularly in the science classroom. This study builds on prior research to characterise teacher interactions with small groups in secondary science and analyses how those interactions affect a collectively constructed space – the triple problem solving space (TPSS) – in which group members collectively understand a task (content/cognitive dimension), manage social interactions (social/relational dimension), and co-construct the emotional life of the group (affective dimension). Results of two biology teachers’ interactions with students in small groups working on inquiry and engineering design activities show that most interactions were administrative and had little influence on the group’s TPSS. Teacher interactions that engaged students in monitoring their problem-solving process, however, did have the capacity to increase cognitive work of the group, which subsequently impacted the students’ group affect and social dimension. These findings suggest that interactions focused on cognitive processes have the potential to support all aspects of a group’s TPSS. Though this research is only a first step in understanding the impact of teacher interactions on small group work, implications for teaching practices are discussed.  相似文献   

3.
The development of curriculum materials that are also educative for teachers has been proposed as a strategy to support teachers learning to teach inquiry science. In this study, one seventh-grade teacher used five inquiry science units with varying support for teachers over a two-year period. Teacher journals, interviews, and classroom videotape were collected. Analysis focused on engagement in planning and teaching, pedagogical content knowledge, and the match to teacher learning needs. Findings indicate that this teacher’s ideas developed as she interacted with materials and her students. Information about student ideas, task- and idea-specific support, and model teacher language was most helpful. Supports for understanding goals, assessment, and the teacher’s role, particularly during discussions and group work, were most needed.  相似文献   

4.
This study compares the learning results of three groups of secondary two (grade eight) students of a similar academic standard who participated in a teaching intervention involving different pedagogies. One hundred and forty-nine Hong Kong secondary students were chosen and divided into three groups, “whole-class teaching approach”, “group work with no specific strategies” and “group work with effective strategies”, to study the “space travel” unit in their science curriculum. The first group was exposed to traditional whole-class instruction, and the latter two practised collaborative group work, with the third adopting four effective strategies derived from a UK-based quasi-experimental project. Analyses of the pre- and post-diagnostic assessments and audiotaped discussions revealed that group work comprising effective strategies not only raised students’ test scores, but also enhanced their joint construction of conceptual knowledge in science. The findings suggest that the effective strategies adopted in this study are contributory factors to superior student accomplishments and a stronger desire to seek clarification accruing from shared cognitive activities.  相似文献   

5.
Drawing on qualitative data, this article presents an analysis of six secondary science teachers’ expectations and practices related to teaching outdoors during a professional development programme. Using Foucault’s and Bernstein’s theories of ‘space’, routines and set practices, I argue that participant teachers’ fear of losing control of their students when in contexts outside the classroom was constructed as place specific in terms of boundaries (or lack of), familiarity and disturbance. Teachers’ ‘fearful’ expectations when outside triggered the initial use of regulatory technologies that were frequently more assertive and controlling than their usual classroom practice, resulting in increased authoritative teaching approaches. However, once technologies of power were developed for use outside, teachers were able to translate and apply their normal dialogic teaching approaches from the classroom. The article concludes with a discussion of student self-regulation through collaborative group work as a step towards resolving the tensions between dialogic pedagogy and teaching in new contexts.  相似文献   

6.
To alleviate teachers’ reluctance toward practical work, there has been much discussion on teachers’ pedagogical content knowledge, teaching materials, and failsafe strategies for practical work. Despite these efforts, practical work is still regarded as a challenging task for many elementary science teachers. To understand the complexity of teachers’ conflicts in practical work, this study examines teachers’ ideas about teaching and learning that influence teachers’ decision‐making and action on teaching practical work. More important than knowing technical–rational aspects of practical work is to understand the internal contradictions that teachers have to resolve within themselves regarding their capabilities and beliefs about science teaching and practical work. Using stories and experiences of 38 third‐year university students in a science method course in Korea, we seek to understand the conflicts and negotiations that they experience as they make decisions regarding practical work throughout their course. Reflective writings and group discussions on their lived experiences and concerns were used to probe participants’ ideas on teaching using practical work. From written and verbal data, themes were saturated in terms of the aspects which could (dis)encourage their practice. Results suggest that there are multifactorial challenges in pre‐service teachers’ understandings and concerns in practical work. Besides time, materials, and curriculum, pedagogical assumptions and values also compositely challenge the minds of teachers. As the pre‐service elementary teachers negotiated within themselves the importance of science in classroom and social levels, the question is raised about their identities as pre‐service elementary teachers to appreciate the balance between science teaching and practical work.  相似文献   

7.
During the last decade there has been on-going discussions about students’ declining interest and low achievement in science. One of the reasons suggested for this decline is that teachers and students have different frames of reference, whereby teachers sometimes communicate science in the classroom in a way that is not accessible to the students. There is a lack of research investigating the effects of coteaching with senior students in science in upper secondary schools. To improve teaching and to narrow the gap between teachers’ and students’ different frames of references, this study investigates how an experienced chemistry teacher gains and refines her pedagogical content knowledge (PCK) by cooperating with two grade 12 students (age 18) as coteachers. The teacher and the two coteachers coplanned, cotaught and coevaluated lessons in chemical bonding in a grade 10 upper secondary class. Findings indicate that the coteachers contributed with their own learning experiences to help the teacher understand how students perceive difficult concepts. In such way, the coteachers were mediating between the teacher and the students, thus bridging the gap between the teacher and the students’ frames of references. The teachers’ PCK was refined which in turn lead to improved teaching strategies.  相似文献   

8.
This study examined the relationships that exist between high school science teachers' understanding of the Piagetian developmental model of intelligence, its inherent teaching procedure—the learning cycle—and classroom teaching practices. The teachers observed in this study had expressed dissatisfaction with the teaching methods they used, and, subsequently, attended a National Science Foundation sponsored in-service program designed to examine laboratory-centered science curricula and the educational and scientific theories upon which the curricula were based. The teachers who exhibited a sound understanding of the Piagetian model of intelligence and the learning cycle were more likely to effectively implement learning cycle curricula. They were able to successfully integrate their students' laboratory experiences with class discussions to construct science concepts. The teachers who exhibited misunderstandings of the Piagetian developmental model of intelligence and the learning cycle also engaged their students in laboratory activities, but these activities were weakly related to learning cycles. For example, the data gathered by their students were typically not used in class discussions to construct science concepts. Therefore, these teachers apparently did not discern the necessity of using the data and experiences from laboratory activities as the impetus for science concept attainment. Additional results comparing degrees of understanding, teaching behaviors and questioning strategies are discussed.  相似文献   

9.
It is a common view that developing teachers’ competence to restructure or reframe their knowledge and beliefs is inevitably a complex challenge. This paper reports on a research project with the aim to develop science teachers’ pedagogical content knowledge (PCK) through their participation in a learning study. A learning study is a collegial process in which teachers work together with a researcher to explore their own teaching activities in order to identify what is critical for their students’ learning. During one semester, three secondary science teachers worked in a learning study together with a researcher in a cyclical process in order to create prerequisites and further identify conditions for students’ learning. During the learning study, data were collected from video-recorded lessons and stimulated recall sessions in which the teachers and the researcher reflected on the lessons to analyze their development of PCK, their students’ learning and the impact of that knowledge on their own teaching. The results provide an insight into how the teachers developed their self-understanding in which they questioned their own epistemological beliefs, aims and objectives of teaching and taken-for-granted assumptions about science teaching and learning. As such, the study provides an understanding of teacher professional learning through a careful investigation of how teachers’ PCK is enhanced through their participation in the learning study, and further, how students’ learning might be developed as a consequence.  相似文献   

10.
Pedagogical content knowledge (PCK) is a type of teacher knowledge to be developed by a teacher. PCK is said to contribute to effective teaching. Most studies investigated the development of PCK and its influence on students’ learning from the teachers’ perspectives. Only a limited number of studies have investigated the components of science teachers’ PCK that helped students’ learning from the perspective of students. Thus, it is the aim of this study to investigate the level of science teachers’ PCK from students’ perspective, in particular whether or not students of different achieving ability had different views of teachers’ PCK in assisting their learning and understanding. Based on the PCK research literature, six components of PCK have been identified, which were as follows: (1) subject matter knowledge, (2) knowledge of teaching strategies, (3) knowledge of concept representation, (4) knowledge of teaching context, (5) knowledge of students, and (6) knowledge of assessment in learning science. A questionnaire consisting of 56 items on a five-point Likert-type scale were used for data collection from 316 Form Four students (16 years old). One-way analysis of variance revealed that the differences in science teachers’ PCK identified by students of different achieving abilities were statistically significant. Overall, students of various academic achieving abilities considered all the components of PCK as important. The low-achieving students viewed all the components of PCK as being less important compared to the high and moderate achievers. In particular, low-achieving students do not view ‘knowledge of concept representation’ as important for effective teaching. They valued the fact that teachers should be alert to their needs, such as being sensitive to students’ reactions and preparing additional learning materials. This study has revealed that PCK of science teachers should be different for high and low-achieving students and knowledge of students’ understanding plays a critical role in shaping teachers PCK.  相似文献   

11.
This study used the Quality Talk and dialogic teaching approach with a group of secondary school teachers (N = 7) to train their facilitation of dialogical discussions by small groups of students. The study used video and audio analysis to assess the teachers’ observable behaviours during these discussions, before and after professional development; for example, types of Quality Talk questions asked. The study also used face‐to‐face interviews, held before and after the professional development, to investigate the teachers’ beliefs about learning through discussion. Results show that although the number of high‐quality questions from the teachers did not increase, the quality of the questions students asked of each other did improve, and resulted in extended periods of dialogic spells. Positive developments were found for teachers’ beliefs about the use of dialogue to foster deeper thinking with their secondary school‐aged students.  相似文献   

12.
ABSTRACT

The study provides an insight into how teachers may facilitate students’ group learning in science with digital technology, which was examined when Norwegian lower secondary school students engaged in learning concepts of mitosis and meiosis. Quantitative and qualitative analyses of the teacher’s assistance draw on Galperin’s conceptualisation of learning.

Findings reveal patterns in the teacher’s guidance: the teacher fulfilled the orienting, executive and controlling functions while assisting students in identifying the key features of mitosis and meiosis and solving the compare and contrast task. The teacher relied on and interplayed with the available mediational resources: compare and contrast task, digital animations, and collaborating peers. However, it was the compare and contrast task that demonstrated an approach to study scientific concepts which may have contributed to the development of learners’ understanding about to engage in learning in science. By adopting such an approach, learning activity has the potential to not only help students to achieve learning outcomes but it acquires a functional significance, becoming a tool in the learning process aimed at the development of students’ as learners. The digital animations, in turn, demonstrated scientific processes that were otherwise invisible for students and triggered group discussions. The study, therefore, raises questions about the need for practitioners’ awareness of the type of support the technology and other resources provide to assist both conceptual learning and enhancing students’ agency in learning to learn.  相似文献   

13.
We investigated secondary science and mathematics teachers engaged in a two-and-a-half-year professional development effort focused on equity. We examined how teachers conducting research on their own instructional practices—a central learning strategy of the professional development project—informed and/or constrained their views related to three strands of equity: teachers and teaching, students and learning, and students’ families and communities. Data collected included recordings of professional development seminars and school-site meetings, three sets of individual interviews with teacher researchers, and drafts and final products of the classroom research teachers conducted. From our qualitative analyses of data, we found that most teachers addressed at least two of the three equity strands in researching their own practice. We also found that most transformed their understandings of teachers and students as a result of their teacher research process. However, teachers’ views of families and communities changed in less substantive ways. We close with recommendations for other researchers and professional developers intent on supporting science and mathematics teachers in using teacher research to work toward equity.  相似文献   

14.
The research is an investigation of teachers’ experience of working with socio-scientific issues (SSI). A large group of teachers (55) chose one of six cases with the characteristics of SSI and were free to organize the work as they found appropriate. The research focuses on how teachers chose content, organized their work and experienced the students’ interest and learning. The teachers answered a questionnaire after working with the cases and seven of them were interviewed to provide in-depth understanding of issues raised in the questionnaire. The teachers found the SSI to be current topics with interesting content and relevant tasks and they felt confident about the work. They were quite content with the students’ learning of scientific facts, how to apply scientific knowledge and to search for information. However, they found that the students did not easily formulate questions, critically examine arguments or use media to obtain information about the task. The interviewed teachers did not find this work new, but they organized it as ‘a special event’. They understood SSI work as ‘free’ work and group work was frequent, but only a few of the teachers developed explicit strategies for teaching SSI. They had different ideas about learning but they all talked about knowledge as a set of facts to be taken in by the students. They all included elements of SSI but mostly to introduce the regular science content. However the teachers started to reflect upon the potential of using SSI to cover more goals in the curriculum.  相似文献   

15.
Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of ‘Density’ was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified from the 55-item questionnaire, namely, ‘focussing on science learning’, ‘facilitating students’ understanding’, ‘encouraging students’ involvement’, ‘creating conducive environment’, ‘encouraging active experimentation’ and ‘preparing students for exam (PSE)’. Significant gaps between teachers’ and students’ conceptions on certain dimensions have been revealed. The inconsistency on the dimension ‘PSE’ is particularly evident and possible reasons for the phenomenon are suggested. This study raises the important questions of how the gap can be addressed, and who is to change in order to close the gaps. Answers to these questions have huge implications for teacher education and teacher professional development.  相似文献   

16.
17.
Efforts to promote more realistic conceptions about science are often limited by teachers’ inexperience in this domain. In this paper, we describe an ‘inductive–deductive, dialectic immersion’ approach towards assisting teachers in developing more realistic conceptions about science — along with corresponding revised perspectives about science teaching. Three secondary teachers of science with minimal science research experience engaged in a case study of science in action — specifically, in an episode of northern alpine ecological field research. Qualitative data analyzed by constant comparative methods suggested that these teachers shifted along a modernist through postmodernist continuum — as indicated by increased support for a more Naturalist epistemology of science, a more Antirealist ontology of science, and corresponding priorities towards science teaching and learning. Results suggest that teachers of science can develop postmodern views about science and science teaching if given opportunities to induce and deduce propositions about science in realistic cases of science in action.  相似文献   

18.
Many within the science education community and beyond see practical work carried out by students as an essential feature of science education. Questions have, however, been raised by some science educators about its effectiveness as a teaching and learning strategy. This study explored the effectiveness of practical work by analysing a sample of 25 ‘typical’ science lessons involving practical work in English secondary schools. Data took the form of observational field notes and tape‐recorded interviews with teachers and students. The analysis used a model of effectiveness based on the work of Millar et al. and Tiberghien. The teachers’ focus in these lessons was predominantly on developing students’ substantive scientific knowledge, rather than on developing understanding of scientific enquiry procedures. Practical work was generally effective in getting students to do what is intended with physical objects, but much less effective in getting them to use the intended scientific ideas to guide their actions and reflect upon the data they collect. There was little evidence that the cognitive challenge of linking observables to ideas is recognized by those who design practical activities for science lessons. Tasks rarely incorporated explicit strategies to help students to make such links, or were presented in class in ways that reflected the size of the learning demand. The analytical framework used in this study offers a means of assessing the learning demand of practical tasks, and identifying those that require specific support for students’ thinking and learning in order to be effective.  相似文献   

19.
This study explores five minority preservice teachers’ conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream White peers served as the framework to identify minority preservice teachers’ instructional ideas, meanings, and actions for teaching science. Data included drawings, narratives, observations and self-review reports of microteaching, and interviews. A thematic analysis of data revealed that the minority preservice teachers’ conceptions of teaching science were a specific set of beliefs-driven instructional ideas about how science content is linked to home experiences, students’ ideas, hands-on activities, about how science teaching must include group work and not be based solely on textbooks, and about how learning science involves the concept of all students can learn science, and acknowledging and respecting students’ ideas about science. Implications for teacher educators include the need to establish supportive environments within methods courses for minority preservice teachers to express their K-12 experiences and acknowledge and examine how these experiences shape their conceptions of teaching science, and to recognize that minority preservice teachers’ conceptions of teaching science reveal the multiple ways through which they see and envision science instruction.  相似文献   

20.
科学教学中在教师的有效导学基础上,提出了培养学生自主学习能力的四个策略:教师引导,明确目标;分块阅读,提出问题;合作学习,解答疑问;交流讨论,教师点评。这样,不仅可提高科学教学的有效性,而且有利于提高学生的终身学习能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号