首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
本文介绍凹四边形的一个性质的四种证法及应用,供初一或初二学生学习时参考.一、凹四边形性质如图1,试说明∠BOC=∠A+∠B+∠C.解1如图2,延长BO交AC于D,则由三角形外角性质得∠BOC=∠C+∠ODC,∠ODC=∠A+∠B.所以∠BOC=∠A+∠B+∠C.  相似文献   

2.
引例如图1,∠DAC是△ABC的一个外角,且∠DAC=2∠B.求证:△ABC是等腰三角形.证明:因为∠DAC=∠B+∠C,∠DAC=2∠B,所以∠B=∠C,即△ABC是等腰三角形.  相似文献   

3.
<正>问题提出如图1,是一个"燕尾图",∠α,∠β,∠γ,∠1之间存在着怎样的关系呢?问题探究:延长BD交AC于点E.因为∠1是△CDE的一个外角,所以∠1=∠CED+∠γ,又因为∠CED是△ABE的一个外角,所以∠CED=∠α+∠β,所以可得∠α,∠β,∠γ,∠1之间的关系是:∠1=∠α+∠β+∠γ.下面让我们一起感受这种"燕尾图"变形带来的无限魅力吧.变形一比较大小  相似文献   

4.
如图1,在凹四边形ABCD中,求证:∠BDC=∠A+∠B+∠C.同学们可利用三角形外角性质或平行线的性质,探索出以下添辅助线的方法:  相似文献   

5.
"三角形的内角和等于180°","三角形的外角等于和它不相邻的两个内角的和",掌握三角形外角及内角和公式是解决有关三角形问题的关键,而要快捷且正确地解答三角形中有关角的求解与证明,就必须熟练地进行有关变形.现举例如下.例1△ABC中,若∠A-2∠B+∠C=0°.则∠B的度数是().A.30°B.45°C.60°D.75°解在△ABC中,有∠A+∠B+∠C=180°,可适当变形为∠A+∠C=180°-∠B.而条件∠A-2∠B+∠C=0°,也可变形为∠A+∠C=2∠B,所以可知180°-∠B=2∠B,解此  相似文献   

6.
在几何中,基本图形是较复杂图形的基础,抓住一些基本图形的特性,许多几何问题常可迎刃而解,现举一例说明.如图1,线段AB、CD相交于点P,则∠A+∠D=∠B+∠C.这是一个很有用的基本图形,由于这两个三角形有一个角是对顶角,因此我们常称它为对顶三角形.其性质(图1中∠A+∠D=∠B+∠C)很容易得到.应用这一基本图形及其性质可以巧解许多问题.一、寻找基本图形解题例1如图2,求∠A+∠B+∠C+∠D+∠E+∠F的度数.解:显然∠A+∠B=∠2+∠3,∠C+∠D=∠1+∠2,∠E+∠F=∠1+∠3,所以∠A+∠B+∠C+∠D+∠E+∠F=2(∠1+∠2+∠3)=2×180°=360°.二、构…  相似文献   

7.
题目如图1,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是().(A)∠APB=∠EPC(B)∠APE=90°(C)P是BC边的中点(D)BP∶BC=2∶3本题答案应该是C.但许多同学是这样解的:当∠APE=90°,∠1+∠α=90°,又因为∠β+∠1=90°,所以∠α=∠β,又因为∠B=∠C,所以△ABP∽△PCE.故选B.选择支B能否推出△ABP∽△ECP?可以换个角度思考,即当△ABP∽△PCE时,能否求出BP的长呢?不妨设正方形的边长为4a,BP=x,则CP=4a-x,CE=2a,根据相似三角形的对应边成比例可得CBEP=PACB,即2xa=4a4-…  相似文献   

8.
例1如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变郾请试着找一找这个规律,你发现的规律是()郾(A)∠A=∠1+∠2(B)2∠A=∠1+∠2(C)3∠A=∠1+∠2摇摇(D)3∠A=2(∠1+∠2)(2003年北京市海淀区中考题)解延长BE、CD交于A',则∠A'=∠A郾在四边形ADA'E中,∠A+∠ADA'+∠A'+∠A'EA=360°.又∠2+∠ADA'=180°,∠A'EA+∠1=180°,∴∠2+∠ADA'+∠A'EA+∠1=360°郾∴∠A+∠A'=∠1+∠2,即摇2∠A=∠1+∠2郾故选(B)郾评析将任意三角形纸片轻轻一折,却折出了相关角与角之间的规律郾…  相似文献   

9.
<正>把四边形的某条边向两方延长,其它各边不在延长所得直线的同一旁,这样的四边形叫做凹四边形.凹四边形有如下性质:如图1,在凹四边形ABCD中,则有:∠ADC=∠A+∠B+∠C.一、凹四边形性质的证明证明如图2,延长AD交BC于P.∵∠ADC=∠1+∠C,∠1=∠A+∠B,∴∠ADC=∠A+∠B+∠C.此性质证明方法较多,这里就不一一列  相似文献   

10.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

11.
如图1,在凹四边形ABCD中,必有∠BDC=∠A+∠B+∠C. 此性质的证明有多种途径: 方法1 连结AD并延长,由三角形外角性质易证. 方法2 连结BC,由三角形内角和的定理易证. 方法3 延长CD(或BD)交AB(或AC)于E,利用三角形外角性质易证.  相似文献   

12.
《时代数学学习》2005,(12):41-41
图1如图1,连结CD,将△ACD以D为旋转中心顺时针旋转60°到△BC′D,连接CC′则∠C′DB=∠CDA,CD=C′D,BC′=AC=b,∴∠C′DC=∠BDA=60°.∴△CDC′是等边三角形,∴CC′=CD.∴在△CBC′中,CC′≤CB+C′B=a+b.∴CD≤a+b.当C′,B,C在同一条直线上时,CD取最大值a+b.这时∠DBC′+∠DBC=180°.又∠D B C′=∠D A C,∠D B A=∠DAB=60°,∠BCA+∠CBA+∠CAB=180°,∴∠DAC+∠DBC=180°,∴∠CBA+∠CAB=60°,∴∠ACB=120°.故当∠ACB为120°时,CD取最大值,最大值为a+b.问题2.10参考答案…  相似文献   

13.
已知:如图1,在凹四边形ABCD中,求证;∠BDC=∠A+∠B+∠C. 分析;利用三角形外角性质和平行线的性质可探索出多种添辅助线的方法: 方法1:连接AD并延长(如图2)由外角性质易证方法2:连接BC(如图3)由三角形内角和的定理易证  相似文献   

14.
结论如图1所示,在凹四边形ABCD中,∠BDC=∠A+∠B+∠C·图1图2图3分析对于上述结论,利用三角形外角的性质和平行线的性质可以探索出多种添加辅助线的方法予以证明·证法1连接AD并延长到E,如图2所示,由三角形的外角性质很容易证明·  相似文献   

15.
有这样一道题,已知:如图1,O是ABC内任意一点,试说明:∠AOB=∠1+∠2+∠C(留给同学们思考)。我们可以由这个图形中抽出“”,它形如圆规状,就把它叫做“规形”(如图2),由上可知∠BOC=∠A+∠B+∠C就是“规形”的性质。现就用“规形”这一性质来求角度之和。∴∠A+∠B+∠C+∠D+∠E+∠F=360°.例2如图4,求∠A+∠B+∠C+∠D+∠E的度数。解:由“规形”图可知,ABOC为“规形”,由性质得∠1=∠A+∠B+∠C又∵∠1=∠2而∠2+∠D+∠E=180°∴∠A+∠B+∠D+∠E=180°.例3如图5,求∠A+∠B+∠C+∠D+∠E的度数解:由“规形”图可知,ACOD为“规…  相似文献   

16.
在数学课上,杨老师出了一个练习题.例1如图1,已知∠B=∠C=30°,∠A=40°,求∠D(图1中所示的钝角)的度数.小毛第一个举手发言:“连结B、C,如图2.因为△ABC的内角和为180°,所以∠DBC+∠DCB=180°-30°×2-40°=80°;又因为△DBC的内角和为180°,所以∠D=180°-∠DBC-∠DCB=180°-80°=100°”.杨老师微笑着点了点头,表示赞同,又问:“还有什么解法?”聪明的小倪举手.“延长BD交AC于E,如图3,因为∠BDC=∠C+∠CED,∠CED=∠A+∠B,所以∠D=∠C+∠A+∠B=100°”.小倪答完,同学们不禁鼓掌,杨老师摸着下巴不住地点头小侯在旁边不…  相似文献   

17.
一、原题再现题目(苏科版《数学》八(下)练习)如图1,在△PAB中,点C、D在边AB上,PC=PD=CD,∠APB=120°,△APC与△PBD相似吗?为什么?略解本题由PC=PD得出∠ACP=∠PDB,利用三角形内角和定理与推论得出∠A+∠B=60°,∠A+∠APC=60°,得出∠B=∠APC,从而判定△APC∽△PBD.点评本题容易得出∠ACP=∠PDB,  相似文献   

18.
学习数学,特别是解题时,对习题进行变式,举一反三,常常收到事半功倍的效果.下面给同学们介绍一下数学习题的几种简单变式:一、把题中的部分题设与结论交换位置例:已知:如图1,AB∥CD,请说明∠BED=∠B+∠D成立的理由.解:过点E作EF∥AB,因为AB∥CD,所以AB∥CD∥EF,所以∠BEF=∠B,∠FED=∠D,所以∠BEF+∠FED=∠B+∠D,即∠BED=∠B+∠D.本题也可以延长BE交CD于点G,再根据平行线的性质及三角形的性质,也可以证出.变式一已知:如图1,∠BED=∠B+∠D,请说明AB∥CD成立的理由.本题是将例题中的题设与结论交换位置,解法如下.过点E作EF∥AB,所以∠BEF=∠B,因为∠BED=∠B+∠D,所以∠BEF+∠FED=∠B+∠D,所以  相似文献   

19.
如图1,△OAB和△OCD中∠AOB和∠COD是对顶角,这样的两个三角形叫对顶三角形.根据三角形内角和定理可得:对顶三角形两底角的和相等.即∠A+∠B=∠C+∠D. 这个性质在某些特殊图形角的求和问题中十分有用.解题时,只要通过添加  相似文献   

20.
证明∵△ABF、△CDB、△EFD是等腰三角形,且腰长相等.∠A+∠C+∠E=21(6-2)×360°×21=360°.所以将顶点放在一起可组成一个新三角形.显然,新三角形与△BDF全等.∵ST=SD=EF=ED=a,∴四边形SDEF是菱形.同理,四边形SFAB、SBCD也是菱形.于是,有EF∥SD∥BC,ED∥SF∥BA.∴∠B=∠E.同理,∠A=∠D,∠C=∠F.问题3·10答案  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号