首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
圆锥曲线的一个统一性质   总被引:2,自引:0,他引:2  
储炳南 《数学教学》2006,(11):24-26
笔者在利用“几何画板”数学软件探讨圆锥曲线切线性质时,发现如下结论:已知过点E(m,0)的直线交抛物线y~2=2px (p>0)(或椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0,m≠0)或双曲线(x~2)-(y~2)/(b~2)=1(a>0,b>O,m≠0))于A、B两点,过点A、B且与抛物线(或椭圆或双曲线)相切的两直线为l_1、l_2,l_1与l_2的交点轨迹记为C,在C上任取一点M,则AM、EM、BM的斜率成等差数列.  相似文献   

2.
一、统一定义及其应用椭圆、双曲线、抛物线统称为圆锥曲线,它们表示到定点F和定直线l的距离的比是一个常数e的点M的轨迹。当O1时,点M的轨迹是双曲线,当e=1时,点M的轨迹是抛物线。其中定点F叫做焦点,定直线l叫准线;定比e叫做离心率。一般来说,涉及圆锥曲线上的点焦点或到准线的距离的问题,直接应用上述定义来解,常可简化解题步骤,减少运算量,举例如下:  相似文献   

3.
中学数学教材中有这样一道习题:过抛物线焦点的一条直线与它交于两点P、Q,经过P点和抛物线顶点的直线与准线交于点M,求证直线MQ平行于抛物线的对称轴.变题(2001年高考题)设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明直线  相似文献   

4.
1问题的提出笔者在利用《几何画板》数学软件探讨抛物线焦点弦的性质时,发现抛物线焦点弦有如下性质:过抛物线x2=2py(p>0)的焦点F的直线交抛物线于A、B两点,点Q是抛物线上任意一点,AQ、BQ与抛物线准线交于点M、N,则:FM⊥FN.  相似文献   

5.
1.题目呈现如图1,已知点F(1,0)为抛物线y^2=2px(p>0),点F为焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F右侧.记△AFG,△CQG的面积为S1,S2.  相似文献   

6.
问题 直线l是过抛物线y^2=2px(p〉0)上一点P的切线.过该抛物线焦点F的直线FN⊥l,与直线l交于点N,与抛物线的准线交于点M.求证:直线MP平行于x轴.  相似文献   

7.
胡廷欣 《考试》2011,(1):53-54
一、定点问题例1已知抛物线y2=2x及定点A(1,1),B(-1,0),M是抛物线上的点,设直线AM,BM与抛物线的另一交点分别为M1,M2,求证:当点M在抛物线上变动时(只要M1,M2存在且M1与M2是不同两点),直线M1M2恒过一定点,并求出定点的坐标。  相似文献   

8.
<正>1引入例1:直线l过抛物线y2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2:直线l过抛物线y2:直线l过抛物线y2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=8y相交所得的弦为PQ,求PQ的中点M的轨迹方程。分析上述三个例题的轨迹方程,得到如下结论:过抛物线内对称轴上一定点(包括顶点)的直线截抛物线所得弦中点的轨迹是一条以该定点为顶点,通径为原抛物线的一半的抛物线,且所得抛物线开口方向和对称轴与原抛物线相同。  相似文献   

9.
解析几何参考书中有一类“求一直线关于另一直线对称的直线方程”的题目。解这类题有好几种解法,这里介绍一种解法,下面先引入一个“关于定直线对称的直线”之间的性质。性质如果已知定直线l,直线l_1关于l对称的直线为l_2,且l_1∩l_2=A,垂直l于点A的直线l_3到l_1、l_2的角分别为α、β,那么,α+β=π。  相似文献   

10.
在教学过程中 ,本人发现一些关于抛物线的问题。问题 1 在高中数学教材中有关抛物线的定义———在平面内与一个定点F和一条定直线l的距离相等的点轨迹叫抛物线。本人认为不完善 ,应定义为 :在平面内与一个定点F和不过定点F的定直线l的距离相等的点轨迹叫抛物线。因为 ,若定点F在定直线l上时 ,动点轨迹是过F且垂直于定直线l的直线。事实上 ,当抛物线的焦点到准线的距离 p逐渐变小时 ,抛物线开口逐渐变小 ,当 p→ 0时 ,抛物线也就趋近一条射线。问题 2 北师大出版的基础训练与学习指导中有一题 :在平面内到定点的距离比它到定直线距离小 …  相似文献   

11.
<正>在高考中,以圆锥曲线为背景的最值问题,是解析几何的一类常见问题。而圆锥曲线的定义是由曲线上的点到焦点的距离来刻画的,由此可对一些距离进行有效转化,因此在解题中凡涉及曲线上的点到焦点的距离时,应先想到利用定义进行求解,这样会有事半功倍之效。1.抛物线定义在最值中的巧用抛物线定义:平面内到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。  相似文献   

12.
高中课本《平面解析几何》习题八中有以下两道习题: 1.过抛物线pxy22=的焦点的一条直线和这条抛物线相交,两个交点的纵坐标为21yy,,求证:22py-=(P101,8) 2.过抛物线焦点的一条直线与它交于两点QP、,通过点P和抛物线顶点的直线交准线于M,求证:直线MQ平行于抛物线的对称轴。(P102,13) 我们将这两道习题联系起来,概括统一为下面的结论。 命题1,过抛物线pxy22=的焦点F的一条直线和它相交于两点QP、,QP、在准线上的射影分别为NM,,则 (1)2pyyNM-=; (2)NFMF^; (3)MQ与NP的交点是抛物线的顶点。 通过类比论证,…  相似文献   

13.
平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫抛物线.其中定点F叫焦点,定直线l叫准线.经过焦点F的直线与抛物线相交于两点P、Q,线段PQ叫抛物线的焦点弦.  相似文献   

14.
张辉 《高中数理化》2014,(21):15-16
抛物线问题是高中数学的重点内容,本文从不同的角度分析一道抛物线问题的解法,希望对同学们有所帮助. 例已知抛物线y^2=4x的焦点为F,过点F的直线交抛物线于A、B 2点. (1)若AF^→=2FB^→,求直线AB的斜率; (2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值. 分析就 第(1)问而言,关键有2点:第一,将方程设成哪种形式.  相似文献   

15.
设直线MN过抛物线的焦点F,与抛物线相交于M、N两点,则MN称为焦点弦.不妨设抛物线Y2=2px(p>0),MN的斜率为k,倾斜角为θ,M(x1,y1),N(x2,y2),MA、NB分别垂直于准线于A、B点.  相似文献   

16.
一、解读一个考题2 0 0 1年高考理科第 19题 :如图 1,设抛物线 y2 =2 px ( p >0 )的焦点为 F,经过点 F的直线交抛物线与A、B两点 ,点 C在抛物线的准线上 ,且 BC∥ x轴 ,证明直线 AC经过原点 O.(证明略 )对比教材 ,显然它是课本习题的一个逆命题 .图 1图 2课本 P10 2 习题八第 13题 :如图 2 ,过抛物线 y2 =2 px ( p >0 )的焦点的一条直线与它交于两点 P、Q,通过点 P和抛物线顶点的直线交准线与点 M,求证 :直线MQ平行于抛物线的对称轴 .(证明略 )二、探究一类问题解读上述这对互逆命题 ,我们通过叠加组合不难得到这样一个重要结论 :如…  相似文献   

17.
正文[1]给出了直线与圆锥曲线位置关系的一个统一性质,笔者进一步探究,由文[1]中的性质推导得到了圆锥曲线中的一个四点共圆性质.文[1]中性质1已知椭圆Mx~2+Ny~2=1(M0,N0,M≠N)与直线l_1交于A、B两点,与直线l_2交于C、D两点,且A、B、C、D四点横坐标均不相同,若l_1与l_2的斜率互为相反数,则直线AC与直  相似文献   

18.
<正>1 试题呈现已知抛物线C:y2=4x的焦点为F,直线y=x-2与抛物线C交于A,B两点.(1)求△FAB的面积;(2)过抛物线C上一点P作圆M:(x-3)2+y2=4的两条斜率都存在的切线分别与抛物线C交于异于点P的两点D,E.证明:直线DE与圆M相切.本题是典型的抛物线多动点问题,结合直线与圆的位置关系进行考查,对学生逻辑推理能力和数学运算能力有较高的要求.直线与圆锥曲线综合问题,常规方法是联立直线与曲线方程,  相似文献   

19.
同学们在解决抛物线问题时,常常入手容易,但要获得正确完美的解答却不容易.下面对同学们在解决抛物线问题时产生的错误进行剖析,供参考.1.概念不清【例1】平面内与定点(-1,2)和定直线x 2y-3=0的距离相等的点的轨迹是()(A)圆(B)椭圆(C)抛物线(D)直线错解:由抛物线定义知,应选(C).剖析:平面内与一个定点和一条定直线的距离相等的点的轨迹是抛物线,但定点必须在直线外.此题定点(-1,2)在直线x 2y-3=0上,由数形结合知,应选(D).2.不明题意【例2】过抛物线y2=2px(p>0)的焦点的一条直线与抛物线交于两点A(x1,y1),B(x2,y2).求y1y2的值.错解:由抛…  相似文献   

20.
<正>1题目呈现(2019年江西省预赛第9题)如图1,椭圆C的两焦点为F_1、F_2,两准线为l_1、l_2.过椭圆上一点P,作平行于F_1F_2的直线分别交l_1、l_2于M_1、M_2,直线M_1F_1与M_2F_2交于点Q.证明:P、F_1、Q,F_2四点共圆.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号