首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a larger project aimed at promoting science and literacy for culturally and linguistically diverse elementary students, this study has two objectives: (a) to describe teachers' initial beliefs and practices about inquiry‐based science and (b) to examine the impact of the professional development intervention (primarily through instructional units and teacher workshops) on teachers' beliefs and practices related to inquiry‐based science. The research involved 53 third‐ and fourth‐grade teachers at six elementary schools in a large urban school district. At the end of the school year, teachers reported enhanced knowledge of science content and stronger beliefs about the importance of science instruction with diverse student groups, although their actual practices did not change significantly. Based on the results of this first year of implementation as part of a 3‐year longitudinal design, implications for professional development and further research are discussed. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 1021–1043, 2004  相似文献   

2.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

3.
This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry‐oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi‐participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.  相似文献   

4.
The purpose of this pragmatic action research study was to explore our re‐conceptualization efforts in preparing pre‐service teachers to guide the inquiry process with formative assessment and subsequently use the understandings to improve our teacher preparation program. The process was guided by two questions: to what extent did course re‐conceptualization efforts lead to a more informed understanding of formative assessment by pre‐service teachers and did strategies enacted in the re‐conceptualized methods course foster or hinder pre‐service teachers' understanding of formative assessment? Data from this study support the following findings: (1) a substantial pre‐ to post‐methods course difference was realized in the pre‐service teachers' understanding of formative assessment; (2) explicit and contextualized approaches to formative assessment in the methods course led to increased understandings by pre‐service teachers; (3) an implicit approach led to improvements in course structure but did not foster pre‐service teachers' understanding of the reflexive nature of formative assessment; and (4) a field‐based case study on elementary science teaching both hindered and fostered our efforts with formative assessment. This study yields implications for pre‐service teacher education on formative assessment. To foster pre‐service teachers' knowledge and skills, we suggest explicit instruction on formative assessment combined with case studies, field experiences, and ongoing reflection. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 402–421, 2010  相似文献   

5.
This study continues research previously conducted by a nine‐university collaborative, the Salish I Research Project, by exploring science teachers' beliefs and practices with regard to inquiry‐oriented instruction. In this study, we analyzed the relationship among secondary science teachers' preparation, their beliefs, and their classroom practices after completion of a course designed to provide authentic inquiry experiences. From Teacher Pedagogical Philosophy Interview data and Secondary Science Teacher Analysis Matrix observational data, we analyzed links between the teachers' conveyed beliefs and observed practice regarding the teachers' actions (TA) and students' actions (SA). Also presented is a listing of teachers' perceived influences from university preparation course work. Results indicated that 7 of the 8 teachers professed a belief in teacher‐centered or conceptual style with regard to TA and SA. The observational results indicated that 7 of the 8 teachers displayed a teacher‐centered or conceptual style with regard to TA and SA. Inconsistencies between interview and observational data were unexpected, as half of the teachers professed slightly greater teacher‐centered styles with regard to TA than what they actually practiced in their classrooms. All teachers reported that an inquiry‐based science course was valuable. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 938–962, 2006  相似文献   

6.
This two‐year school‐wide initiative to improve teachers’ pedagogical skills in inquiry‐based science instruction using a constructivist sociocultural professional development model involved 30 elementary teachers from one school, three university faculty, and two central office content supervisors. Research was conducted for investigating the impact of the professional development activities on teachers’ practices, documenting changes in their philosophies, instruction, and the learning environment. This report includes teachers’ accounts of philosophical as well as instructional changes and how these changes shaped the learning environment. For the teachers in this study, examining their teaching practices in learner‐centered collaborative group settings encouraged them to critically analyze their instructional practices, challenging their preconceived ideas on inquiry‐based strategies. Additionally, other factors affecting teachers’ understanding and use of inquiry‐based strategies were highlighted, such as self‐efficacy beliefs, prior experiences as students in science classrooms, teacher preparation programs, and expectations due to federal, state, and local mandates. These factors were discussed and reconciled, as they constructed new understandings and adapted their strategies to become more student‐centered and inquiry‐based.  相似文献   

7.
This study examined how the National Board Certification (NBC) process, especially the portfolio creation, influenced candidate teachers' pedagogical content knowledge (PCK). In a larger sense, this study aimed to construct a better understanding of how teachers develop PCK and to establish ecological validity of the National Board assessments. Qualitative research methods, most notably case study, were utilized. Participants were three high school science teachers who were going thorough the NBC process. Data sources included classroom observations, interviews, teachers' reflections, and researcher's field notes. Data were analyzed using the constant comparative method and enumerative approach. Findings indicated that the NBC process affected five aspects of the candidate teachers' instructional practices that were closely related to PCK development: (a) reflection on teaching practices, (b) implementation of new and/or innovative teaching strategies, (c) inquiry‐oriented instruction, (d) assessments of students' learning, and (e) understanding of students. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 812–834, 2008  相似文献   

8.
This article investigates three teachers' conceptions and use of inquiry‐based instructional strategies throughout a professional development program. The professional development program consisted of a 2‐week summer inquiry institute and research experience in university scientists' laboratories, as well as three academic year workshops. Insights gained from an in‐depth study of these three secondary teachers resulted in a model of teacher conceptions that can be used to direct future inquiry professional development. Teachers' conceptions of inquiry teaching were established through intensive case–study research that incorporated extensive classroom observations and interviews. Through their participation in the professional development experience, the teachers gained a deeper understanding of how to implement inquiry practices in their classrooms. The teachers gained confidence and practice with inquiry methods through developing and presenting their institute‐developed inquiry lessons, through observing other teachers' lessons, and participating as students in the workshop inquiry activities. Data analysis revealed that a set of four core conceptions guided the teachers' use of inquiry‐based practices in their classrooms. The teachers' conceptions of science, their students, effective teaching practices, and the purpose of education influenced the type and amount of inquiry instruction performed in the high school classrooms. The research findings suggest that to be successful inquiry professional development must not only teach inquiry knowledge, but it must also assess and address teachers' core teaching conceptions. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1318–1347, 2007  相似文献   

9.
Curriculum materials are crucial tools with which teachers engage students in science as inquiry. In order to use curriculum materials effectively, however, teachers must develop a robust capacity for pedagogical design, or the ability to mobilize a variety of personal and curricular resources to promote student learning. The purpose of this study was to develop a better understanding of the ways in which preservice elementary teachers mobilize and adapt existing science curriculum materials to plan inquiry‐oriented science lessons. Using quantitative methods, we investigated preservice teachers' curriculum design decision‐making and how their decisions influenced the inquiry orientations of their planned science lessons. Findings indicate that preservice elementary teachers were able to accurately assess how inquiry‐based existing curriculum materials are and to adapt them to make them more inquiry‐based. However, the inquiry orientations of their planned lessons were in large part determined by how inquiry‐oriented curriculum materials they used to plan their lessons were to begin with. These findings have important implications for the design of teacher education experiences that foster preservice elementary teachers' pedagogical design capacities for inquiry, as well as the development of inquiry‐based science curriculum materials that support preservice and beginning elementary teachers to engage in effective science teaching practice. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:820–839, 2010  相似文献   

10.
Adapted primary literature (APL) refers to an educational genre specifically designed to enable the use of research articles for learning biology in high school. The present investigation focuses on the paedagogical content knowledge (PCK) of four high‐school biology teachers who enacted an APL‐based curriculum in biotechnology. Using a constructivist qualitative research approach, we analysed those teachers' aims and beliefs, the instructional strategies they used during the enactment of the curriculum, as well as the outcomes of the enactment as perceived by the teachers and their students, and as reflected in the class observations. Some of the teachers' strategies applied during the enactment, such as the conversational model, were specifically designed for teaching APL‐based curricula. We found that the instructional strategies applied for the adapted articles were associated with cognitive and affective engagement, active learning, inquiry thinking, and understanding of the nature of science. Suitable teacher PCK promoted learning by inquiry in addition to learning on inquiry. Students' challenges were mainly linked to the comprehension of complex, multi‐stage, biotechnological processes and methods that are abundant throughout the curriculum and required the use of previous knowledge in new contexts. A complex interaction of factors, namely teachers' PCK, the APL genre, and the biotechnology content of the curriculum, shaped the instructional strategies of the new curriculum and the outcomes of its enactment  相似文献   

11.
In this study, five elementary teachers and a university researcher developed and implemented problem‐based learning (PBL) experiences in the context of science teaching and learning. Collaborative inquiry was adopted as a methodology, while a variety of qualitative methods were used to examine the engagement and development of teachers’ pedagogical content knowledge (PCK). A PCK model is used as a framework to examine teachers’ professional knowledge growth in areas such as orientations to teaching science, knowledge of science curriculum, knowledge of students’ understanding of science, knowledge of assessment, and knowledge of instructional strategies. Implications for how teachers may be supported when adopting instructional innovations are discussed.  相似文献   

12.
What are the barriers to technology‐rich inquiry pedagogy in urban science classrooms, and what kinds of programs and support structures allow these barriers to be overcome? Research on the pedagogical practices within urban classrooms suggests that as a result of many constraints, many urban teachers' practices emphasize directive, controlling teaching, that is, the “pedagogy of poverty” (Haberman, 1991 ), rather than the facilitation of students' ownership and control over their learning, as advocated in inquiry science. On balance, research programs that advocate standards‐based or inquiry teaching pedagogies demonstrate strong learning outcomes by urban students. This study tracked classroom research on a technology‐rich inquiry weather program with six urban science teachers. The teachers implemented this program in coordination with a district‐wide middle school science reform. Results indicated that despite many challenges in the first year of implementation, students in all 19 classrooms of this program demonstrated significant content and inquiry gains. In addition, case study data comprised of twice‐weekly classroom observations and interviews with the six teachers suggest support structures that were both conducive and challenging to inquiry pedagogy. Our work has extended previous studies on urban science pedagogy and practices as it has begun to articulate what role the technological component plays either in contributing to the challenges we experienced or in helping urban science classrooms to realize inquiry science and other positive learning values. Although these data outline results after only the first year of systemic reform, we suggest that they begin to build evidence for the role of technology‐rich inquiry programs in combating the pedagogy of poverty in urban science classrooms. © 2002 John Wiley & Sons, Inc. J Res Sci Teach 39: 128‐150, 2002  相似文献   

13.
14.
Teachers often have difficulty implementing inquiry‐based activities, leading to the arousal of negative emotions. In this multicase study of beginning physics teachers in Australia, we were interested in the extent to which their expectations were realized and how their classroom experiences while implementing extended experimental investigations (EEIs) produced emotional states that mediated their teaching practices. Against rhetoric of fear expressed by their senior colleagues, three of the four teachers were surprised by the positive outcomes from their supervision of EEIs for the first time. Two of these teachers experienced high intensity positive emotions in response to their students' success. When student actions/outcomes did not meet their teachers' expectations, frustration, anger, and disappointment were experienced by the teachers, as predicted by a sociological theory of human emotions (Turner, J. H. (2007). Human emotions: A sociological theory. London, England: Routledge). Over the course of the EEI projects, the teachers' practices changed along with their emotional states and their students' achievements. We account for similarities and differences in the teachers' emotional experiences in terms of context, prior experience, and expectations. The findings from this study provide insights into effective supervision practices that can be used to inform new and experienced teachers alike. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 50:137–161, 2013  相似文献   

15.
Attaining the vision for science teaching and learning emphasized in the Framework for K‐12 Science Education and the next generation science standards (NGSS) will require major shifts in teaching practices in many science classrooms. As NGSS‐inspired cognitively demanding tasks begin to appear in more and more science classrooms, facilitating students' engagement in high‐level thinking as they work on these tasks will become an increasingly important instructional challenge to address. This study reports findings from a video‐based professional development effort (i.e., professional development [PD] that use video‐clips of instruction as the main artifact of practice to support teacher learning) to support teachers' learning to select cognitively demanding tasks and to support students' learning during the enactment of these tasks in ways that are aligned with the NGSS vision. Particularly, we focused on the NGSS's charge to get students to make sense of and deeply think about scientific ideas as students try to explain phenomena. Analyses of teachers' pre‐ and post‐PD instruction indicate that PD‐participants began to adopt instructional practices associated with facilitating these kinds of student thinking in their own classrooms. The study has implications for the design of video‐based professional development for science teachers who are learning to facilitate the NGSS vision in science classrooms.  相似文献   

16.
The use of kits in elementary science classes is a growing trend in some countries. Kits provide materials and inquiry lessons in a ready-to-teach format for teachers to use in their science instruction. This study examined elementary teachers' instructional strategies, classroom practices, and assessment types in relation to the frequency of science kit use. A total of 503 elementary teachers from an urban school district received professional development, implemented kits in their classrooms for a year, and then completed a survey about science kit use and teaching practices. Despite similarities in demographic characteristics (gender, ethnicity, certification/educational level), there were significant differences in teachers' use of inquiry-based teaching and assessment practices by kit use. Teachers who reported using kits the most often were significantly more likely to report that their students designed and implemented laboratory investigations as well recorded, represented, and analyzed data. In addition, the high kit users indicated that they were more likely to use student groups, require students to use evidence to support claims, and use alternative assessments of student work including portfolios, notebooks, and long-term projects than those teachers who used kits less frequently. Those teachers who reported using kits the least often were significantly more likely to report having students practice for standardized tests. The role of kits in promoting reform-based teaching practices is discussed.  相似文献   

17.
In this article we assert a potential research agenda for the teaching and learning of science as inquiry as part of the JRST series on reform in science education. Drawing on the theoretical frameworks of cognitive and sociocultural constructivism, cultural models of meaning, the dialogic function of language, and transformational models of teacher education, we propose that more research is needed in the areas of teachers' beliefs, knowledge, and practices of inquiry‐based science, as well as, student learning. Because the efficacy of reform efforts rest largely with teachers, their voices need to be included in the design and implementation of inquiry‐based curriculum. As we review the literature and pose future research questions, we propose that particular attention be paid to research on inquiry in diverse classrooms, and to modes of inquiry‐based instruction that are designed by teachers. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 631–645, 2001  相似文献   

18.
19.
The purpose of this study was to examine the ways in which elementary teachers applied their understanding of conceptual learning and teaching to their instructional practices as they became knowledgeable about conceptual change pedagogy. Teachers' various ways to interpret and utilize students' prior ideas were analyzed in both epistemological and ontological dimensions of learning. A total of 14 in‐service elementary teachers conducted an 8‐week‐long inquiry into students' conceptual learning as a professional development course project. Major data sources included the teachers' reports on their students' prior ideas, lesson plans with justifications, student performance artifacts, video‐recorded teaching episodes, and final reports on their analyses of student learning. The findings demonstrated three epistemologically distinct ways the teachers interpreted and utilized students' prior ideas. These supported Kinchin's epistemological categories of perspectives on teaching including positivist, misconceptions, and systems views. On the basis of Chi's and Thagard's theories of conceptual change, the teachers' ontological understanding of conceptual learning was differentiated in two ways. Some teachers taught a unit to change the ontological nature of student ideas, whereas the others taught a unit within the same ontological categories of student ideas. The findings about teachers' various ways of utilizing students' prior ideas in their instructional practices suggested a number of topics to be addressed in science teacher education such as methods of utilizing students' cognitive resources, strategies for purposeful use of counter‐evidence, and understanding of ontological demands of learning. Future research questions were suggested. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1292–1317, 2007  相似文献   

20.
Professional knowledge is an important source of science teachers' actions in the classroom (e.g., personal professional content knowledge [pedagogical content knowledge, PCK] is the source of enacted PCK in the refined consensus model [RCM] for PCK). However, the evidence for this claim is ambiguous at best. This study applied a cross-lagged panel design to examine the relationship between professional knowledge and actions in one particular instructional situation: explaining physics. Pre- and post a field experience (one semester), 47 preservice physics teachers from four different universities were tested for their content knowledge (CK), PCK, pedagogical knowledge (PK), and action-related skills in explaining physics. The study showed that joint professional knowledge (the weighted sum of CK, PCK, and PK scores) at the beginning of the field experience impacted the development of explaining skills during the field experience (β = .38**). We interpret this as a particular relationship between professional knowledge and science teachers' action-related skills (enacted PCK): professional knowledge is necessary for the development of explaining skills. That is evidence that personal PCK affects enacted PCK. In addition, field experiences are often supposed to bridge the theory-practice gap by transforming professional knowledge into instructional practice. Our results suggest that for field experiences to be effective, preservice teachers should start with profound professional knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号