首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
本文给出几种特殊数列的求和公式: 1、等差数列各项K次幂的和的递推公式。 2、等差数列与等比数列相应项之积的和的公式。 3、设(a_n)为等差数,公差为d,则 (1)sum from i=1 to n (a_ia_(i+k)…a_(1+k-1))=a_1a_2…a_k+(a_na_(n+1)…a_(n+k)-a_1a_2…a_(k+1))╱(k+1)d (2)sum from i=1 to n (1╱a_1a_2…a_(i+k-1))=1╱((k-1)d)(1╱a_1a_2…q_(n-1))-1╱(a_(n+1)a_(n+2)…a_(n+k=1))  相似文献   

2.
定理1 设{a_n}为一公差为d的等差数列,而a_i、a_j、a_k、a_r为其中的四项(i相似文献   

3.
腾发祥同志在《数学解题教学新探》一文(见《数学通报》88年第6期)中,提出了一个不正确的公式: 在等比数列中,由公比的意义q=(a_n)/(a_(n-1))=(a_n)/(qa_(n-2))=(a_n)/(q~2a_(n-3))=…=(a_n)/(q~(n-2)a_1)可得q=((a_n)/(a_1))~(1/(n-1))① a_n=a_1q~(n-1)②若a_k与a_r是等比数列的任意两项,类比公式①、②,又得: q=((a_k)/(a_r))~(1/(k-r))③ a_k=a_rq~(k-r)④显然,公式①、②是③、④当r=1时的特  相似文献   

4.
设n是大于1的自然数,a>0。易知a(?)1时,a-1与n-(1+a+…+a~(n-1))总是异号。所以, (a-1)[n-(1+a+…+a~(n-1))]≤0。即(a-1)(n-(1-a~n)/(1-a))≤0。整理,有a(n-a~(n-1))≤n-1。①显然,①式等号成立的充分必要是a=1。如果a_1,a_2,…,a_n是n个正数,在①中令a=(a_1/((a_1+a_2+…+a_n)/n)~(1/(n-1)),则有a_1~(1/(n-1))·(a_2+…+a_n)/(n-1)≤≤((a_1+a_2+…+a_n)/n)~(n~(n-1)),即((a_1+a_2+…+a_n)/n)~n≥≥a_1((a_1+a_2+…+a_n)/(n-1))~(n-1)。②再在①中令a=(a_2/(a_2+…+a_n)/(n-))~(1/(n-2)),重复上述步骤,并结合②,有  相似文献   

5.
性质:设{a_n}为等差数列,则(1) 1/(2k-1)sum from i=1 to (2k-1)(a_i=a_k).(2)1/2k sum from i=1 to 2k(a_i=(a_k a_(k 1))/2).此性质可叙述为:等差数列奇数项的算术平均值等于中间一项;等差数列偶数项的算术平均值等于中间两项的算术平均值.证明:设d为等差数列{a_n}的公差,则a_i=a_k (i-k)d=(a_k-kd) id(i=1,2,…)应用这个性质,可给出一些高考数列题的简解.例1.在等基数列{a_n}中,若a_3 a_4 a_5 a_6 a_7=450,则a_2 a_8的值等于( ).(A)45,(B)75,(C)180,(D)300.(1991年上海高考题)  相似文献   

6.
有些排列组合问题若能根据其自身特点找出递推关系,就能解决一些比较困难的问题。 1.错排问题:a_1a_2…a_n是1,2,…n的任一排列,求满足a_i≠i,i=1,2,…n的全体排列个数D_n 解。a_1有n-1种选择,a_1=k,k≠1,那么a_k有两种可能。(1)a_k=1,这时由于a_1=k,a_k=1,则满足原条件的排列个数为D_(n-2) 。(2)a_k≠1,这时由于a_1=k已确定,则满足原条件的排列个数为:D_(n-1)。因此D_n=(n-1)(D_(n-2) D_(n-1))  相似文献   

7.
给定数列{a_n},若a_n k与a_n、a_(n 1)、a_(n 2)、…、a_(n k-1)之间满足关系式a_(n k)=f(a_(n k-1),a_n k-2,…,a_n),则称此关系式为k阶递推式.由此递推式及初始值a_1、a_2、…、a_k所确定的数列{a_n}称为k阶递推数列.若a_(n k)能表成c_1(n)a_n c_2(n)a_(n 1) … c_(n k)(n)a_(n k-1)的形式,则该递推关系为k阶线性递推关系(等差、等比数列是最简单的一阶线性递推数  相似文献   

8.
第三届美国数学邀请赛试题中有这样一道题:选取一列整数a_1,a_2,a_3,…,使得每个n≥3都有a_n=a_(n-1)-a_(n-2),若该数列的前1492项之和等于1985,前1985项之和等于1492,那么前2001项之和是多少? 这是一道很好的数列题,它有多种解法,现介绍—种较为巧妙的解法。∵ a_n=a_(n-1)-a_(n-2) ∴ a_n=(a_(n-2)-a_(n-3))-a_(n-2)=-a_(n-3)。(1) 这表明数列中的第一项和第四项、第二项和第五项、第三项和第6项,……互为相反数重复使用(1)可得 a_n=-a_(n-3)=-(-a_(n-6))=a_(n-6)。(2) 这表明这个数列中的各项是以6为周期重复出现的。  相似文献   

9.
<正>求数列通项在高考中属于常考内容,本文归纳整理了几种方法,供参考.一、已知a_1和a_n=a_(n-1)+f(n)型,其中f(n)可求和例1已知数列{a_n}满足a_(n+1)=a_n+3n+2,且a_1=2,求a_n.解由a_(n+1)=a_n+3n+2知a_(n+1)-a_n=3n+2,a_n-a_(n-1)=3n-1.a_n=(a_n-a_(n-1))+(a_(n-1)-a_(n-2))+…+(a_2-a_1)+a_1=(3n-1)+(3n-4)+……+5+2  相似文献   

10.
设数列a_0,a_1,a2,…,a_n满足a_0=1/2,及a_(k 1)=a_k (1/n)a_k~2(k=0,1,2,…,n-1),其中n是一个给定的正整数。试证:  相似文献   

11.
二项式定理以结构的对称性给人以美的享受,这种美感更体现在它的广泛应用上。运用二项式定理证明一些不等式,结构简明,思路清晰,可达事半功倍之效。 例1 已知数列|a_n|,|b_n|,分别是等差数列和等比数列,且a_1=b_1,a_2=b_2,a_1≠a_2;a_n>0(n∈N~ ),求证:当n≥3时,a_nN时a_n<0,矛盾。故d>0。 n≥3,b_n=b_1q~(n-1)=a_(a_2/a_1)~(n-1) =a_1((a_1) a_1)~(n-1)=a_1(1 d/(a_1))~(n-1) =a_1[1 C_(n-1)~1d/(a_1) C_(n-1)~2 … C_(n-1)~(n-1)(d/(a_1))~(n-1)]  相似文献   

12.
文[1]中给出了如下不等式:已知 a>b>c,求证:a~2b b~2c c~2a>ab~2 bc~2 ca~2.(1)本文先给出(1)式的几种不同形式的拓广,然后探讨它们的一些应用.命题1 设 a_1>a_2>…a_(n-1)>a_n,n≥3,则有a_1~2a_2 a_2~2a_3 … a_(n-1)~2a_n a_n~2a_1>a_1a_2~2 a_2a_3~2 … a_(n-1)a_n~2 a_na_1~2.(2)证明(i)当 n=3时,由(1)知,命题成立;(ii)假设当 n=k(≥3)时,命题成立,则当 n=k 1时,由 a_1>a_2>…>a_k>a_k 1得a_1>a_2>…>a_k,a_1>a_k>a_(k 1)得a_1~2a_2 a_2~2a_3 … a_(k-1)~2a_k a_k~2a_1>a_1a_2~2  相似文献   

13.
如果不等式是一个n元对称式,那么应用逐步调整法来证明有时显得较方便。下面通过两个例子的分析来说明这方法的意义。例1 已知a_1,a_2,…,a_k,…为两两各不相同的正整数,求证:对任何正整数n,下列不等式成立: sum from k=1 to n (a_k/k~2)≥sum from k=1 to n (1/k). (第二十届国际数学竞赛试题第5题) 证:(1) 如果已知数列恰好满足条件: a_1相似文献   

14.
文献[1]提出如下一个代数不等式的猜想:猜想设 a_i>0,i=1,2,…,n,3≤n ∈N,证明或否定:f(a_1,a_2,…,a_n)=(a_1/1 a_1 a_1a_2 … a_1a_2…a_(n-1)) (a_2/1 a_2 a_2a_3 … a_2a_3…a_n) (a_3/1 a_3 a_3a_4 … a_3a_4…a_na_1) ……  相似文献   

15.
例1已知数列{a_n}中,a_1=1,对任意自然数n都有a_n=a_(n-1)+1/(n(n+1)),求a_n.解:由已知得a_n-a_(n-1)=1/(n(n+1)),a_(n-1)-a_(n-2)=1/((n-1)n),…,a_3-a_2=1/(3×4),a_2-a_1=1/(2×3).以上n-1个式子累加,并利用1/(n(n+1))=1/n-1/(n+1),得a_n-a_1=1/(2×3)+…+1/((n-2)(n-1))+1/((n+1)n)+1/(n(n+1))=1/2-1/(n+1),∴a_n=3/2-1/(n+1).点评:求形如a_n-a_(n-1)=f(n)的数列通项,可用累加法.  相似文献   

16.
对于一个数列a_1,a_2,…,a_n,…来说,它的一般项a_n总可以写成a_n=a_1 (a_2-a_1) (a_3-a_2) … (a_(n-1)-a_(n-2)) (a_n-a_(n-1)) ① 也可以写成a_n=a_1·(a_2/a_1)·(a_3/a_2)·…·(a_(n-1)/(a_(n-2))·a_n/(a_(n-1)) ②这两种数列的变换技巧对于证明某些等式及不等式,或解其他有关数学问题时会带来很多方便,限于篇幅,本文仅以高考试题中的实例来说明其应用。  相似文献   

17.
文[1]将一个无理不等式推广为:定理1 设正整数 n≥3,a_i∈R~ (i=1,2,…,n),实数 k≥(n-1)/n,则有∑(a_1/(a_2 a_3… a_n))~k≥n/(n-1)~k,当且仅当 a_1=a_2=…=a_n 时取等号.(∑表示对 a_1,a_2,…,a_n 的循环和)文[2]给出如下两个定理:定理2 若 a_i>0(i=1,2,…,n),s=,则(其中m≥1,n≥2,n∈N,p≥0,A>a_i~p).(1)  相似文献   

18.
数列{a_n}中,a_1=1,a_(n+1)=1/(16)(1+4a_n+(1+24a_n)~(1/2)),求a_n.解:构建新数列{b_n},使b_n=(1+24a_n)~(1/2)>0,则b_1=5,b_n~2=1+24a_n(?)a_n=(b_n~2-1)/(24).由a_(n+1=1/16(1+4a_n+(1+24a_n)~(1/2)),得(b_(n+1)~2-1)/(24)=  相似文献   

19.
在中学数学中,逐差法(逐项相消法)常常用来求某些数列的前n项和以及求某些递推数列的通项公式。在数列求和时,如果可将数列的一般项a_k写成 a_b=λ〔f(k 1)-f(k)〕, ①其中λ为待定常数,而f(k)为k的函数,则可在①中令k=1、2、…、n,然后将这n个等式相加,于是数列{a_k}的前n项和即为 S_n=a_l a_2 … a_n =λ〔f(n 1)-f(1)〕②这里要说明的是,将数列的一般项a_k写成两项之差的目的是为了求和时等式右端的  相似文献   

20.
本文给出任意项级数收敛判定方法:如果级数∑_(n=1) a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)∞ a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)sinπ/2(a_0n∞sinπ/2(a_0nk+a_1nk+a_1n(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)sinπ/2n∞sinπ/2n(2s+1)/n收敛,级数∑_(n=1)(2s+1)/n收敛,级数∑_(n=1)sinπ/2n∞sinπ/2n(2s)/n发散,其中s∈N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号