首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present numerical simulations of DNA-chip hybridization, both in the “static” and “dynamical” cases. In the static case, transport of free targets is limited by molecular diffusion; in the dynamical case, an efficient mixing is achieved by chaotic advection, with a periodic protocol using pumps in a rectangular chamber. This protocol has been shown to achieve rapid and homogeneous mixing. We suppose in our model that all free targets are identical; the chip has different spots on which the probes are fixed, also all identical, and complementary to the targets. The reaction model is an infinite sink potential of width dh, i.e., a target is captured as soon as it comes close enough to a probe, at a distance lower than dh. Our results prove that mixing with chaotic advection enables much more rapid hybridization than the static case. We show and explain why the potential width dh does not play an important role in the final results, and we discuss the role of molecular diffusion. We also recover realistic reaction rates in the static case.  相似文献   

2.
A technique for visualizing and quantifying reactive mixing for laminar and turbulent flow in a microscale chemical reactor using confocal-based microscopic laser induced fluorescence (confocal μ-LIF) was demonstrated in a microscale multi-inlet vortex nanoprecipitation reactor. Unlike passive scalar μ-LIF, the reactive μ-LIF technique is able to visualize and quantify micromixing effects. The confocal imaging results indicated that the flow in the reactor was laminar and steady for inlet Reynolds numbers of 10, 53, and 93. Mixing and reaction were incomplete at each of these Reynolds numbers. The results also suggested that although mixing by diffusion was enhanced near the midplane of the reactor at Rej = 53 and 93 due to very thin bands of acidic and basic fluid forming as the fluid spiraled towards the center of the reactor, near the top, and bottom walls of the reactor, the lower velocities due to fluid friction with the walls hindered the formation of these thin bands, and, thus, resulted in large regions of unmixed and unreacted fluid. At Rej = 240, the flow was turbulent and unsteady. The mixing and reaction processes were still found to be incomplete even at this highest Reynolds number. At the reactor midplane, the flow images at Rej = 240 showed unmixed base fluid near the center of the reactor, suggesting that just as in the Rej = 53 and 93 cases, lower velocities near the top and bottom walls of the reactor hinder the mixing and rection of the acidic and basic streams. Ensemble averages of line-scan profiles for the Rej = 240 were then calculated to provide statistical quantification of the microscale mixing in the reactor. These results further demonstrate that even at this highest Reynolds number investigated, mixing and reaction are incomplete. Visualization and quantification of micromixing using this reactive μ-LIF technique can prove useful in the validation of computational fluid dynamics models of micromixing within microscale chemical reactors.  相似文献   

3.
The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures.  相似文献   

4.
Micromixers with floor-grooved microfluidic channels have been successfully demonstrated in experiment. In this work, we numerically simulated the mixing within the devices and used the obtained concentration versus channel length profiles to quantitatively characterize the process. It was found that the concentration at any given cross-section location of the microfluidic channel periodically oscillates along the channel length, in coordination with the groove-caused helical flow during the mixing, and eventually converges to the neutral concentration value of two the mixing fluids. With these data, the specific channel length required for each helical flow to complete, the mixing efficiency of the devices, and the total channel length required to complete a mixing were easily defined and quantified, and were used to directly and comprehensively characterize the micromixing. This concentration versus channel length profile-based characterization method was also demonstrated in quantitatively analyzing the micromixing within a classic T mixer. It has clear advantages over the traditional concentration image-based characterization method that is only able to provide qualitative or semiquantitative information about a micromixing, and is expected to find an increasing use in studying mixing and optimizing device structure through numerical simulations.  相似文献   

5.
Studying enzymatic bioreactions in a millisecond microfluidic flow mixer   总被引:1,自引:0,他引:1  
In this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached. Four lamination layers in a shallow channel reduce the diffusion lengths to a few micrometers only, enabling very fast mixing. This was proven by confocal fluorescence measurements in the channel’s cross sectional area. Adjusting the overall flow rate in the 200 μm wide and 900 μm long mixing and observation channel makes it possible to investigate enzyme reactions over several seconds. Further, the device enables changing the enzyme/substrate ratio from 1:1 up to 3:1, while still providing high mixing efficiency, as shown for the enzymatic hydrolysis using β-galactosidase. This way, the early kinetics of the enzyme reaction at multiple enzyme/substrate concentrations can be collected in a very short time (minutes). The fast and easy handling of the mixing device makes it a very powerful and convenient instrument for millisecond temporal analysis of bioreactions.  相似文献   

6.
Over the course of last two decades, surface plasmon resonance (SPR) has emerged as a viable candidate for label-free detection and characterization for a large pool of biological interactions, ranging from hybridization of oligonucleotides to high throughput drug-screening. Conventional SPR bio-sensing involves a step-response method where the SPR sensorgram in response to a switched sequential flow of analyte and buffer is plotted in real-time and fitted to an exponential curve to extract the associative and dissociative reaction rates. Such measurement schemes involve continuous flow conditions where a substantial reagent volume is consumed and is subject to dispersive mixing at flow switching zones. In this paper, we demonstrate a new plug-train SPR technique in a microfluidic chip that separates and singulates solvent plugs in analyte and buffer by an immiscible air phase. Bio-samples are first discretized within plug droplets with volumes in order of few hundred nanoliters or less followed by pressure-driven transport onto SPR sensing sites of this hydrophobically modified SPR microdevise. The kinetic constants ka and kd for a model protein-small molecule interaction pair are extracted from a plug-train signal and are shown to be in reasonable agreement with our previous reports.  相似文献   

7.
The T-shaped microchannel system is used to mix similar or different fluids, and the laminar flow nature makes the mixing at the entrance junction region a challenging task. Acoustic streaming is a steady vortical flow phenomenon that can be produced in the microchannel by oscillating acoustic transducer around the sharp edge tip structure. In this study, the acoustic streaming is produced using a triangular structure with tip angles of 22.62°, 33.4°, and 61.91°, which is placed at the entrance junction region and mixes the inlets flow from two directions. The acoustic streaming flow patterns were investigated using micro-particle image velocimetry (μPIV) in various tip edge angles, flow rate, oscillation frequency, and amplitude. The velocity and vorticity profiles show that a pair of counter-rotating streaming vortices were created around the sharp triangle structure and raised the Z vorticity up to 10 times more than the case without acoustic streaming. The mixing experiments were performed by using fluorescent green dye solution and de-ionized water and evaluated its performance with the degree of mixing (M) at different amplitudes, flow rates, frequencies, and tip edge angles using the grayscale value of pixel intensity. The degree of mixing characterized was found significantly improved to 0.769 with acoustic streaming from 0.4017 without acoustic streaming, in the case of 0.008 μl/min flow rate and 38 V oscillation amplitude at y = 2.15 mm. The results suggested that the creation of acoustic streaming around the entrance junction region promotes the mixing of two fluids inside the microchannel, which is restricted by the laminar flow conditions.  相似文献   

8.
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length Lm as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since Lm is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications.  相似文献   

9.
This paper investigates the phenomenon of Faradaic charging in ac electrokinetics. Faradaic reactions were suggested as a key effect responsible for the reversal of pumping direction in ac micropumps. However, this hypothesis has yet to be proven convincingly and directly. Here we present an ion detection strategy to determine the production of ions through Faradaic hydrolytic reactions originating from direct application of voltage to electrolytic solutions during ac electrokinetics. Experiments were performed with symmetrical planar electrodes aligned along a microfluidic channel. Fluorescein, a pH-dependent dye, was employed as the pH indicator for the detection of ion production. Images were captured for analysis at various voltage levels. From analyzing the fluorescence intensity and its distribution, it can be concluded that the production of ions from hydrolytic reactions takes place and increases with the ac voltage. The coefficient of deviation indicates a significant enhancement at ac voltage above 11 Vpp. Lastly, we demonstrate a strategy using dc-biased ac electrokinetics to achieve controllability in direction and magnitude of the net fluid flow in pumping application.  相似文献   

10.
11.
In the present studies the property of Lectins as agglutinin and to bind sugars in the blood on normal and cancer cervix patients has been studied. Out of 36 lectins extracted from the seeds of various plants, 25 were non-specific haemagglutinins and 11 were non-reactive with the RBC of normal persons. The titre value greatly varied from 1∶4 to 1∶4096. The titre value of RBC of patients of carcinoma cervix (Stage III) was compared with the normal person’s RBC. Out of 25 non-specific haemagglutinins 16 lectins did not show any difference in titre value. Nine lectins agglutinated RBC of cancer patient at a higher dilution than the normal. On the contrary, 3 lectins agglutinated the cancerous patient’s RBC at a higher concentration than the normal (Control). Sugar specificity of 25 non-specific haemagglutinins was tested with 13 sugars separately. Haemagglutination Inhibition (HI) reaction showed marked difference in the RBC of normal and in carcinoma cervix patient. Four marked reactions were noticed. RBC of normal (N) and carcinoma patient (C) with positive HI reaction (C+/N+), with negative HI reaction (C?/N?); with C positive and N negative HI reaction (C+/N?) and with C negative and N positive HI reaction (C?/N+). Three lectins were specific to sugar moieties.Vicia faba JV II showed dissimilarity with fructose and glucose moiety and also indicated that cellulose is common in both RBC of normal and cancer cervix patient.Triticum vulgare lectin showed the difference in cellulose moiety.Linum usitatissimum lectin showed the difference in lactose moiety and indicated that melibiose is present in both. It was also observed that mannose gave positive HI reaction with lectins ofR. communis, L. esculentus, P. sativum, P. sativum Pusa 10,P. sativum R?1,D. lablab, A. indica, H. vulgare andZ. mays in the blood of cancer cervix patient suggesting that mannose perhaps is present in the RBC while it may not be present in the normal person’s RBC. Raffinose also gave the positive HI reaction with cancer patient’s blood and not with the normal person’s blood.  相似文献   

12.
Fast and catalyst-free cross-linking strategy is of great significance for construction of covalently cross-linked hydrogels. Here, we report the condensation reaction between o-phthalaldehyde (OPA) and N-nucleophiles (primary amine, hydrazide and aminooxy) for hydrogel formation for the first time. When four-arm poly(ethylene glycol) (4aPEG) capped with OPA was mixed with various N-nucleophile-terminated 4aPEG as building blocks, hydrogels were formed with superfast gelation rate, higher mechanical strength and markedly lower critical gelation concentrations, compared to benzaldehyde-based counterparts. Small molecule model reactions indicate the key to these cross-links is the fast formation of heterocycle phthalimidine product or isoindole (bis)hemiaminal intermediates, depending on the N-nucleophiles. The second-order rate constant for the formation of phthalimidine linkage (4.3 M−1 s−1) is over 3000 times and 200 times higher than those for acylhydrazone and oxime formation from benzaldehyde, respectively, and comparable to many cycloaddition click reactions. Based on the versatile OPA chemistry, various hydrogels can be readily prepared from naturally derived polysaccharides, proteins or synthetic polymers without complicated chemical modification. Moreover, biofunctionality is facilely imparted to the hydrogels by introducing amine-bearing peptides via the reaction between OPA and amino group.  相似文献   

13.
In this paper, necessary and sufficient conditions are derived for the existence of temporally periodic “dissipative structure” solutions in cases of weak diffusion with the reaction rate terms dominant in a generic system of reaction-diffusion equations ?ci/?t = Di?2ci+Qi(c), where the enumerator index i runs 1 to n, ci = ci(x, t) denotes the concentration or density of the ith participating molecular or biological species, Di is the diffusivity constant for the ith species and Qi(c), an algebraic function of the n-tuple c = (c1,\3., cn), expresses the local rate of production of the ith species due to chemical reactions or biological interactions.  相似文献   

14.
Let χm+1=T(χm) or even χm+1=T(χm,χm?1, …, χm?q), m=1,2,3 … be an iteration method for solving the nonlinear problem F(χ)=0, where F(χ) and its derivatives possess all of the properties required by T(χm). Then if it can be established that for the problem at hand ∥F(χm+1)∥?βm∥F(χm)∥, ? m > M0 (M0<∞) and 0?βm<1 , definitions are established and theorems proven concerning convergence, uniqueness and bounds on the error after ‘m’ successive iterations of a new approach to convergence properties T(χm). These charateristics are referred to as “alternate” (local, global) convergence properties and none of the proofs given are restricted to any specific type of method such as, e.g. contraction mapping types. Application of results obtained are illustrated using Newton's method as well as the general concept of Newton-like methods.  相似文献   

15.
Determining an input matrix, i.e., locating predefined number of nodes (named “key nodes”) connected to external control sources that provide control signals, so as to minimize the cost of controlling a preselected subset of nodes (named “target nodes”) in directed networks is an outstanding issue. This problem arises especially in large natural and technological networks. To address this issue, we focus on directed networks with linear dynamics and propose an iterative method, termed as “L0-norm constraint based projected gradient method” (LPGM) in which the input matrix B is involved as a matrix variable. By introducing a chain rule for matrix differentiation, the gradient of the cost function with respect to B can be derived. This allows us to search B by applying probabilistic projection operator between two spaces, i.e., a real valued matrix space RN?×?M and a L0 norm matrix space RL0N×M by restricting the L0 norm of B as a fixed value of M. Then, the nodes that correspond to the M nonzero elements of the obtained input matrix (denoted as BL0) are selected as M key nodes, and each external control source is connected to a single key node. Simulation examples in real-life networks are presented to verify the potential of the proposed method. An interesting phenomenon we uncovered is that generally the control cost of scale free (SF) networks is higher than Erdos-Renyi (ER) networks using the same number of external control sources to control the same size of target nodes of networks with the same network size and mean degree. This work will deepen the understanding of optimal target control problems and provide new insights to locate key nodes for achieving minimum-cost control of target nodes in directed networks.  相似文献   

16.
BackgroundThe aim of this work was to purify and characterize exo-β-1,3-glucanase, namely, TtBgnA, from the thermophilic fungus Thielavia terrestris Co3Bag1 and to identify the purified enzyme.ResultsThe thermophilic biomass-degrading fungus T. terrestris Co3Bag1 displayed β-1,3-glucanase activity when grown on 1% glucose. An exo-β-1,3-glucanase, with an estimated molecular mass of 129 kDa, named TtBgnA, was purified from culture filtrates from T. terrestris Co3Bag1. The enzyme exhibited optimum activity at pH 6.0 and 70°C and half-lives (t1/2) of 54 and 37 min at 50 and 60°C, respectively. Substrate specificity analysis showed that laminarin was the best substrate studied for TtBgnA. When laminarin was used as the substrate, the apparent KM and Vmax values were determined to be 2.2 mg mL-1 and 10.8 U/mg, respectively. Analysis of hydrolysis products by thin-layer chromatography (TLC) revealed that TtBgnA displays an exo mode of action. Additionally, the enzyme was partially sequenced by tandem mass spectrometry (MS/MS), and the results suggested that TtBgnA from T. terrestris Co3Bag1 could be classified as a member of the GH-31 family.ConclusionsThis report thus describes the purification and characterization of TtBgnA, a novel exo-β-1,3-glucanase of the GH-31 family from the thermophilic fungus T. terrestris Co3Bag1. Based on the biochemical properties displayed by TtBgnA, the enzyme could be considered as a candidate for potential biotechnological applications.How to cite: Rodríguez-Mendoza J, Santiago-Hernández A, Alvarez-Zúñiga MT, et al. Purification and biochemical characterization of a novel thermophilic exo-β-1,3-glucanase from the thermophile biomass-degrading fungus Thielavia terrestris Co3Bag1. Electron J Biotechnol 2019;41. https://doi.org/10.1016/j.ejbt.2019.07.001  相似文献   

17.
Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy–Chapman solution to the Poisson–Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases.  相似文献   

18.
Jiang L  Zeng Y  Zhou H  Qu JY  Yao S 《Biomicrofluidics》2012,6(1):12810-1281012
In order to fully explore and utilize the advantages of droplet-based microfluidics, fast, sensitive, and quantitative measurements are indispensable for the diagnosis of biochemical reactions in microdroplets. Here, we report an optical detection technique using two-photon fluorescence lifetime imaging microscopy, with an aligning-summing and non-fitting division method, to depict two-dimensional (2D) maps of mixing dynamics by chaotic advection in microdroplets with high temporal and spatial resolution. The mixing patterns of two dye solutions inside droplets were quantitatively and accurately measured. The mixing efficiency in a serpentine droplet mixer was also quantified and compared with the simulation data. The mapped chaotic mixing dynamics agree well with the numerical simulation and theoretical prediction. This quantitative characterization is potentially applicable to the real-time kinetic study of biological and chemical reactions in droplet-based microfluidic systems.  相似文献   

19.
N-containing organic compounds are of vital importance to lives. Practical synthesis of valuable N-containing organic compounds directly from dinitrogen (N2), not through ammonia (NH3), is a holy-grail in chemistry and chemical industry. An essential step for this transformation is the functionalization of the activated N2 units/ligands to generate N−C bonds. Pioneering works of transition metal-mediated direct conversion of N2 into organic compounds via N−C bond formation at metal-dinitrogen [N2-M] complexes have generated diversified coordination modes and laid the foundation of understanding for the N−C bond formation mechanism. This review summarizes those major achievements and is organized by the coordination modes of the [N2-M] complexes (end-on, side-on, end-on-side-on, etc.) that are involved in the N−C bond formation steps, and each part is arranged in terms of reaction types (N-alkylation, N-acylation, cycloaddition, insertion, etc.) between [N2-M] complexes and carbon-based substrates. Additionally, earlier works on one-pot synthesis of organic compounds from N2 via ill-defined intermediates are also briefed. Although almost all of the syntheses of N-containing organic compounds via direct transformation of N2 so far in the literature are realized in homogeneous stoichiometric thermochemical reaction systems and are discussed here in detail, the sporadically reported syntheses involving photochemical, electrochemical, heterogeneous thermo-catalytic reactions, if any, are also mentioned. This review aims to provide readers with an in-depth understanding of the state-of-the-art and perspectives of future research particularly in direct catalytic and efficient conversion of N2 into N-containing organic compounds under mild conditions, and to stimulate more research efforts to tackle this long-standing and grand scientific challenge.  相似文献   

20.
This paper is to study the mean square stabilizability and regional stability of discrete-time mean-field stochastic systems. Firstly, a necessary and sufficient condition is presented via the spectrum of linear operator to illustrate the stabilizability of discrete-time mean-field stochastic systems. B(0, γ)-stabilizability is introduced and transformed into solving linear matrix inequalities (LMIs). Secondly, BM-stability is characterized, especially, the stabilities of circular region, sector region and annulus regions are discussed extensively. Finally, as applications, it is shown that B(0, γ1; γ2)-stability has close relationship with the decay rate of the system state response and the Lyapunov exponent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号